臺灣大學應用數學科學研究所105學年度碩士班甄試試題 科目:微積分

2015, 10, 23

(1) (20 pts)

- (a) (8 pts) Evaluate the four-dimensional volume of the unit ball $x^2 + y^2 + z^2 + v^2 = 1$ in \mathbb{R}^4 .
- (b) (12 pts) Evaluate

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-2Q(x,y,z)) dx dy dz.$$

Here $Q(x, y, z) = x^2 + y^2 + z^2 + xy + yz$.

(2) (20 pts) Use the fact that there is a real number e with the property that

$$0 < n! \left(e - \sum_{r=0}^{n} \frac{1}{r!} \right) < \frac{1}{n}$$

for all integers $n \ge 1$. Assuming only this property of e, prove that e is irrational. Hint: Assume on the contrary that e = p/q; choose a suitable value for n and deduce that there would be an integer k such that 0 < k < 1.

- (3) (20 pts) Consider the seris $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$.
 - (a) (14 pts) Show that the series converges for every x.
 - (b) (6 pts) Provide an argument that the sum is a continuous function on $(-\infty, \infty)$.
- (4) (20 pts) Let s_{jk} be non-negative numbers, $1 \le j, k < \infty$. Suppose that

$$\sum_{k=1}^{\infty} s_{jk} = 1 \quad \text{for all } j$$

and

$$\lim_{i \to \infty} s_{jk} = 0 \quad \text{for all } k.$$

Let $\{x_j\}$ be a convergent sequence of real numbers. Define

$$y_j = \sum_{k=1}^{\infty} s_{jk} x_k.$$

Prove that the sequence $\{y_j\}$ converges and

$$\lim_{j\to\infty}y_j=\lim_{k\to\infty}x_k.$$

- (5) (20%) Consider a sequence a_1, \dots, a_n, \dots with $a_1 = 1$ and $a_{n+1} = 1 + 1/a_n$.
 - (5a) (5%) Assume that $\lim_{n\to\infty} a_n$ exists and determine its limit τ .
 - (5b) (10%) Prove that $|a_{k+1} \tau| \le \tau^{-k}$.
 - (5c) (5%) Prove (from the definition) that $a_n \to \tau$ as $n \to \infty$.