臺灣大學數學系

八十六學年度碩士班甄試入學考試試題

數理統計

<u>[回上頁]</u>

1.

(25 points) Let X_{ij} (i = 1, ..., p; j = 1, ..., k) be independent $N(\mu_i, \sigma^2)$ variables. a.

(10 points) Show that the M.L.E.'s of μ_i , i = 1, ..., p and σ^2 are $\hat{\mu}_i = \frac{1}{k} \sum_{i=1}^k X_{ij}$

and
$$\hat{\sigma}^2 = \frac{1}{kp} \sum_{i=1}^p \sum_{j=1}^k (X_{ij} - \hat{\mu}_i)^2$$
.

b.

(10 points) Describe the distribution of $\hat{\mu}_i$ and the distribution of $\hat{\sigma}^2$.

c.

(10 points) Suppose k is fixed but $p \to \infty$. Is $\hat{\sigma}^2$ a good estimate of σ^2 ?

2.

(20 points) If X_1,\ldots,X_n are iid N(heta,1) random variables. The UMVU estimator of

$$p = P(X_1 \le 0) (= \Phi(-\theta))$$

is

$$\delta_n = \Phi\Big[-\bar{X}\sqrt{\frac{n}{n-1}}\Big],$$

where $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ and $\Phi(\cdot)$ is the cumulative distribution function of standard normal random variable. a.

(10 points) Suppose the assumption of normality is not valid but $E(X_i) = \theta$ and $Var(X_i) = 1$. If we continue to use δ_n as an estimator of $p = P(X_1 \le 0)$, describe the limiting behavior of δ_n ? Give conditions under which δ_n is a consistent estimate of p?

b.

(10 points) Suppose the assumption of normality is not valid. Propose an alternative estimator of p and show that it is a consistent estimate of p.