臺灣大學數學系 九十九學年度碩士班甄試試題

科目:機率統計

2009.10.30

1. (20 pts) Suppose that (X, Y) is uniformly distributed over the region

$$\{(x,y): 0 < |y| < x < 1\}.$$

- (1a) (5 pts) Find the joint density of (X, Y).
- (1b) (5 pts) Find the marginal densities $f_X(x)$.
- (1c) (5 pts) Are X and Y independent? Please state reason to support your answer.
- (1d) (5 pts) Find E(X|Y) and E(Y|X).
- 2. (20 pts) Let T_1, \ldots, T_n be a random sample from an exponential distribution with mean 1. (i.e. Its density function is $\exp(-x)$ over $x \in [0, \infty)$. Denote its order statistics by $T_{(1)} < \cdots < T_{(n)}$.
 - (2a) (15 pts) Determine a_n such that, for any positive x,

 $\lim_{n\to\infty} P(T_{(n)} \leq a_n x)$ converges to a limit which is greater than 0 and less than 1.

- (2b) (5 pts) Determine the asymptotic distribution of $T_{(n)}$ as n goes to infinity.
- 3. (20 pts) Suppose $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} Poisson(\lambda)$.
 - (3a) (8 pts) How would you construct a confidence interval for λ when n is large? (You need to specify which table you need to check for getting a 95% confidence interval.)
 - (3b) (8 pts) What is a more accurate interval using variance stabilizing transforms?
 - (3c) (4 pts) If a preliminary estimate suggests that $\lambda \approx 1$, how large a sample should you collect to ensure that the variance stabilized confidence interval has length ≤ 0.1 ?
- 4. (20 pts) Suppose X_1, \ldots, X_n are independent random variables, and for each i, X_i follows the exponential distribution with $E(X_i) = i\beta$, where β is an unknown parameter. (i.e., The density function of X_i is $(i\beta)^{-1} \exp(-x/(i\beta))$.)
 - (4a) (8 pts) Compute the maximum likelihood estimate of β , $\hat{\beta}_n$.
 - (4b) (7 pts) Determine $E(\hat{\beta}_n)$ and $Var(\hat{\beta}_n)$
 - (4c) (5 pts) Show that $\hat{\beta}_n$ is a consistent estimator of β .

5. (20 pts) We wish to test the null hypothesis H_0 that a given die is fair $(p_1 = \cdots = p_6 = 1/6)$ against the alternative H_a , that the die is biased in the following way:

$$p_1 = 1/5, p_6 = 1/10, p_2 = p_3 = p_4 = p_5 = 7/40.$$

It is rolled 10 times.

(5a) (6 pts) Describe the distribution of (n_1, n_6) under both H_0 and H_a , where n_1 (respectively n_6) is the number of 1s (respectively 6s) among the 10 rolls.

We now plan to carry out a test of H_0 with alternative H_a , on the basis of the outcome of the 10 rolls. Three test statistics are under consideration to test this null hypothesis: the number n_1 of 1s; the number n_6 of 6s; and the likelihood ratio statistic.

- (5b) (9 pts) For each of these three statistics, determine a cut off defining a rejection region has a Type 1 error as close to 5% as is achievable. (You don't need to give numerical result. Instead, state clearly what you will do when you have certain table, certain approximation, or calculator.)
- (5c) (5 pts) Using the cut offs determined in (5b), calculate the power of one test you choose, that is, the probability of rejecting the null hypothesis H_0 when the alternative H_1 is true. (You don't need to give numerical result. Instead, state clearly what you will do when you have certain table, certain approximation, or calculator.)