臺灣大學數學系

九十八學年度碩士班甄試試題

科目:機率統計

2008.10.31

- 1. Let U_1, \dots, U_n and V be independent and identically distributed uniform random variables on the interval [0,1].
- (1a) (10%) Find the joint probability density function of $U_{(1)} = \min\{U_1, \dots, U_n\}$ and $U_{(n)} = \max\{U_1, \dots, U_n\}$.
- (1b) (10%) Find $P(U_{(1)} < V < U_{(n)})$.
- 2. (15%) Let X and Y have the joint probability density function $f(x,y) = e^{-y}$, $0 \le x \le y$. Find the joint probability density function of the random variables E[X|Y] and E[Y|X].
- 3. (15%) Let X_1, \dots, X_n be a random sample from a population $\{x_1, \dots, x_N\}$. Find an unbiased estimator of $\sigma^2 = N^{-1} \sum_{i=1}^N (x_i \mu)^2$, where $\mu = N^{-1} \sum_{i=1}^N x_i$.
- 4. (10%) (10%) Consider a random sample X_1, \dots, X_n from a population with density function

$$f(x|\mu,\sigma) = \frac{1}{2\sigma} e^{\frac{|x-\mu|}{\sigma}} 1_{(-\infty,\infty)}(x).$$

Find the maximum likelihood and moment estimators of μ and σ .

- 5. Let $X_i \sim Binomial(n_i, p_i)$, $i = 1, \dots, m$, be independent.
- (5a) (10%) Derive the likelihood ratio test for the null hypothesis $H_0: p_1 = \cdots = p_m$ versus the alternative hypothesis $H_A: p_i \neq p_j$ for some $i \neq j$.
- (5b) (10%) What is the large sample distribution of the test statistic?
- 6. (10%) Let X follow a Poisson distribution with rate λ . Find a variance-stabilizing transformation of X.