臺灣大學數學系 九十六學年度碩士班甄試試題 科目:機率統計

2006.11.3

- 1. If X and Y are independent random variables with the same density $f(x) = \lambda^{-1}e^{-x/\lambda}I_{(0,\infty)}(x)$, where $\lambda > 0$, $I_{(0,\infty)}(x)$ equals 1 if $x \in (0,\infty)$ and 0 otherwise. Let Z = X + Y.
 - (a) (6%) Find the joint density function of X and Z.
 - (b) (6%) Find the conditional distribution of Z given X = x for any x > 0.
 - (c) (8%) Find and compare the conditional variance of Z given $X=x,\,x>0,$ and the variance of Z.
- Suppose that X₁,..., X_n is a random sample from a continuous distribution function F. Let X₍₁₎,..., X_(n) be the order statistics of the sample.
 - (a) (10%) Find the distribution of the random variable $F(X_{(k)})$, for any k = 1, ..., n.
 - (b) (10%) Find the limiting distribution of n{1 − F(X_(n))} when the sample size n is large.
- 3. A manufacturer wants to estimate the proportion p, 0 i</sub> be the number of items inspected by the i-th workers, i = 1,...,n.
 - (a) (6%) What assumptions are need so that the Geometric model $X_1, ..., X_n$ i.i.d. with probability density function $f(x) = p(1-p)^{x-1}, x = 1, 2, ...$ is reasonable?
 - (b) (8%) Find the maximum likelihood estimator of p, denoted as \hat{p}_1 .
 - (c) (10%) Let $\hat{p}_2 = (n-1) \left(\sum_{i=1}^n X_i 1\right)^{-1}$. Show that \hat{p}_2 is the uniformly minimum variance unbiased estimator of p.
 - (d) (10%) Compare the asymptotic mean squared errors of \hat{p}_1 and \hat{p}_2 .
- 4. Suppose that $X_1, ..., X_n$ is a random sample from a Gamma distribution with density $f(x) = \Gamma(\nu)^{-1} \theta^{-\nu} x^{\nu-1} e^{-x/\theta} I_{(0,\infty)}(x)$, where $\nu > 0$ is some known constant and $\theta > 0$ is an unknown parameter.
 - (a) (12%) Construct a uniformly most powerful test, with significance level α , for testing the hypotheses H_0 : $\theta \in \{0.5, 1, 1.6, 1.7, 2\}$ against H_1 : $\theta \in \{2.5, 3, 6, 8, 10\}$
 - (b) (6%) Suppose that ν = 0.2 and there is a sample of size 180 with sample mean 0.3. Under significance level α = 0.05, does the test in (a) reject H₀ or not? You may like to use an appropriate normal approximation, and the 95-th percentile of the standard normal distribution is 1.645.
 - (c) (8%) For the test in (a), derive an appropriate approximation to the p-value of any given observed value of the sample mean n⁻¹ ∑_{i=1}ⁿ X_i.