臺灣大學數學系

九十二學年度碩士班甄試入學試題

機率統計

Nov 29, 2002

[回上頁]

1.

Let (Ω, \mathcal{B}, P) be a probability space and $A, B \in \mathcal{B}$ with P(A) > 0 and P(B) > 0. Let I_A and I_B be the indicator functions of A and B respectively. Define $\rho(A, B) =$ the correlation between I_A and I_B .

(a)

(10%) Express $\rho(A, B)$ in terms of P(A), P(B) and $P(A \cap B)$.

(b)

(10%) Show that

$$\rho(A,B) > 0 \Leftrightarrow P(A|B) > P(A) \Leftrightarrow P(B|A) > P(B) \,,$$

and

$$\rho(A,B) < 0 \Leftrightarrow P(A|B) < P(A) \Leftrightarrow P(B|A) < P(B).$$

(C)

(5%) When will
$$\rho(A,B) = -1$$
? When will $\rho(A,B) = 1$?

2.

Suppose a bivariate random vector (X, Y) has joint pdf

$$f(x,y) = b (c^{2} + x^{2} + y^{2})^{-3/2}, \ -\infty < x < \infty, \ -\infty < y < \infty,$$

where c > 0 is a constant.

(a)

(5%) Find the value of b.

(b)

(10%) Find the marginal pdf's of X and Y. Does EY exist?

(C)

(10%) Find the conditional pdf of Y given X = x. Does the conditional expectation E(Y|X = x) exist?

3.

Let X_1, \dots, X_n be a random sample from a distribution whose first four moments exist. and let

$$S_n^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / (n-1).$$

(a)

(8%) Show that $E(S_n^2) = \sigma^2$, where $\sigma^2 = Var(X_1)$.

(b)

(6%) Show that $Var(S^2_n)$ exists and tends to zero as $n \to \infty$.

(C)

(6%) Show that S^2_n converges in probability to σ^2 as $n \to \infty$.

4.

Let X_1, \dots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution where $\mu \in [\mu_0, \infty)$ for some known μ_0 .

(a)

(10%) Find the MLE for μ .

(b)

(10%) For a given level of significance $\alpha < 0.5$, construct the likelihood ratio test for $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$.

(C)

(10%) For a given level of significance $\alpha < 0.5$, construct the Uniformly Most Powerful test for $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$.

[回上頁]