臺灣大學數學系

100 學年度碩士班甄試試題

科目:機率統計

- 1. (10%) (5%) Let $W \sim N(\mu, \sigma^2)$ and $Y = \exp(W)$. Find the probability density function of Y and it's corresponding moments.
- 2. (10%) Let $X, Y, Z \stackrel{i.i.d}{\sim} N(0,1)$ with $(X,Y,Z) = (R\sin\Phi\cos\Theta, R\sin\Phi\sin\Theta, R\cos\phi)$, where the supports of R, Φ , and Θ are $(0,\infty)$, $(0,\pi)$, and $(0,2\pi)$, respectively. Find the joint distribution of (R,Φ,Θ) .
- 3. (10%) Let X_1, \dots, X_n be a random sample with $E[h(X_1, X_2)] = \theta$, where h(x, y) is a symmetric function. Moreover, let $X_{(1)}, \dots, X_{(n)}$ denote the order statistics of X_1, \dots, X_n . Derive the conditional expectation $E[h(X_1, X_2)|X_{(1)}, \dots, X_{(n)}]$.
- 4 (8%) (7%) Let $I(f) = \int_a^b f(x)dx$ and X_1, \dots, X_n be a random sample from a density function g(x) on [a, b]. Find an unbiased estimator of I(f) and compute it's variance.
- 5. (10%) Find the minimizer of $S(a) = \sum_{i=1}^{n} |X_i a| 0.5(X_i a)$.
- 6. (15%) Let X_1, \dots, X_{n+1} be a random sample from $Bernoulli(\pi)$ and $h(\pi) = P(\sum_{i=1}^n X_i > X_{n+1}|\pi)$. Find the uniformly minimum variance unbiased estimator of $h(\pi)$.
- 7. (10%) Let X_1, \dots, X_n be a random sample from a population with probability density function $f(x|\theta,\nu) = (\theta\nu^{\theta}/x^{\theta+1})1_{[\nu,\infty)}(x)$, where θ and ν are unknown positive parameters. Find the maximum likelihood estimators of θ and ν .
- 8. (15%) Let X_1, \dots, X_n be a random sample from $Uniform(\theta, \theta + 1)$. Consider the hypotheses $H_0: \theta = 0$ versus $H_A: \theta > 0$. Find the uniformly most powerful size α test.