臺灣大學數學系 九十八學年度碩士班甄試試題

科目:線性代數

2008.10.31

You should include in your answer every piece of computation and every piece of reasoning so that the corresponding partial credit could be gained.

- (1) (20 %) Let V be the real vector space of all functions from \mathbb{R} to \mathbb{R} .
- (a) For any integer n, define $f_n(x) = \cos(x+n)$. Find the dimension of the subspace of V generated by $\{f_n(x): n \in \mathbb{Z}\}$.
- (b) For any integer n, define $g_n(x) = e^{nx}$. Find the dimension of the subspace of V generated by $\{g_n(x) : n \in \mathbb{Z}\}$.
- (2) (25 %) Let V be a finite dimensional vector space and V^* be its dual space. For any subspace W, let $W^0 = \{ f \in V^* : f(w) = 0 \text{ for all } w \in W \}$.
 - (a) Show that $(W_1 \cap W_2 \cap \cdots \cap W_k)^0 = W_1^0 + W_2^0 + \cdots + W_k^0$.
- (b) Let $f_1, f_2, \ldots, f_k, g \in V^*$. Show that $\bigcap_{i=1}^k \ker f_i \subseteq \ker g$ if and only if g is a linear combination of f_1, f_2, \ldots, f_k .
 - (3) (25 %) Let T be a linear transformation in a finite dimensional vector space V over K. The spectrum of T is $\operatorname{Sp}(T) := \{\lambda \in K : \lambda I T \text{ is singular}\}.$
 - (a) If T is invertible, show that $\lambda \in \operatorname{Sp}(T)$ if and only if $\lambda^{-1} \in \operatorname{Sp}(T^{-1})$.
- (b) Let K be algebraically closed. Show that, for any polynomial $p(x) \in K[x]$, $p(\operatorname{Sp}(T)) = \operatorname{Sp}(p(T))$.
 - (4) (15 %) Let V be an inner product space and T be a linear transformation in V. Show that there exists M > 0 such that $||Tv|| \le M||v||$ for all $v \in V$,
 - (5) (15 %) Show that the following matrices in $M_p(\mathbb{Z}/(p))$, p a prime, are similar:

$$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & \cdots & & \cdots & & \\ 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ & \cdots & & & \cdots & \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}.$$