Linear Algebra

1. Are the following statements true or false? If true, give a proof. If false, give a counterexample.

- a. If V and W are vector spaces, then $V \cap W$ is a vector space.
- b. If V and W are vector spaces, then $V \cup W$ is a vector space.
- c. The only $n \times n$ matrix that is both diagonalizable and nilpotent is the zero matrix.
- d. If A and B are both nilpotent $n \times n$ matrices, then AB is a nilpotent $n \times n$ matrix.

2. Let V be a finite-dimensional vector space over \mathbb{C} . Let $T: V \to V$ be a linear map. Suppose that $W \subseteq V$ is a T-invariant subspace, i.e. $T(W) \subseteq W$.

3. Let A be an invertible $n \times n$ matrix and let N be a nilpotent $n \times n$ matrix. Suppose that AN = NA. Prove that A - N is invertible.

4. Let V be a finite-dimensional real vector space equipped with an inner product $\langle \cdot, \cdot \rangle$. Let v_1, \dots, v_n be a set of non-zero vectors in V such that $\langle v_i, v_j \rangle \leq 0$, for all $i \neq j$.

- a. Suppose that v_1, \dots, v_n are linearly dependent. Prove that there exists a non-trivial linear combination $\sum_{i=1}^n \lambda_i v_i = 0$, with $\lambda_i \ge 0$, for all *i*.
- b. Suppose there exists a linear map $f: V \to \mathbb{R}$ such that $f(v_i) > 0$, for all *i*. Prove that v_1, \dots, v_n are linearly independent.

5. Let V be a finite-dimensional complex vector space equipped with a Hermitian product $\langle \cdot, \cdot \rangle$. Let $d: V \to V$ be a linear map satisfying $d^2 = 0$, and let $\delta: V \to V$ be the adjoint map of d with respect to $\langle \cdot, \cdot \rangle$.

- a. Prove that $d\delta x = 0$ implies that $\delta x = 0$, and $\delta dx = 0$ implies that dx = 0, for all $x \in V$.
- b. Let $\Delta = d\delta + \delta d$. Prove that $\text{Ker}\Delta = \text{Ker}\delta \cap \text{Ker}d$.
- c. Prove that $\operatorname{Ker}\Delta \cap (\operatorname{Im}\delta + \operatorname{Im}d) = 0.$
- d. Prove that $V = \text{Ker}\Delta \oplus (\text{Im}\delta + \text{Im}d)$.
- e. Prove that $\operatorname{Ker} d/\operatorname{Im} d \cong \operatorname{Ker} \Delta$.