臺灣大學數學系 九十一學年度第一學期碩士班甄試入學試題 線性代數甲 December 7, 2001

[回上頁]

1.

Let a $2n \times 2n$ matrix be given in the form $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ where each block is an

 $n \times n$ matrix. Suppose that A is invertible and that AC = CA. Show that

$$Det \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] = Det(AD - CB).$$

2.

Let $T: V \to V$ be a linear transformation on a finite dimensional vector space V. (a) Show that there exists k such that $\operatorname{Im} T^k = \operatorname{Im} T^m$ and $\operatorname{Ker} T^k = \operatorname{Ker} T^m$ for all $m \ge k$.

(b) Show that there exists n such that Ker $T^n \cap \text{Im } T^n = (0)$.

3.

Let $n \geq 2$ and N be an n imes n matrix over a field such that $N^n = 0$ but $N^{n-1}
eq 0$

.Prove that N has no square root A (i.e. $A^2 = N$).

4.

Let T be a unitary linear transformation on a finite dimensional vector space V over C (i.e. $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all $x, y \in V$). Prove that T has a unitary square root.

[回上頁]