臺灣大學數學系

九十學年度碩士班甄試入學考試試題

線性代數

[回上頁]

1.

Let A be an invertible matrix over a field F.

a.

Suppose A is diagonalizable. Is A^{-1} diagonalizable? What are the eigenvalues of A^{-1} ?

b.

Show that $A^{-1} = p(A)$, where p(x) is a polynomial in x with coefficients in F.

2.

Let A be a complex $n \times n$ matrix. Prove that there exist complex matrices A_s and A_n with the following properties:

a.

 A_s is diagonalizable and A_n is nilpotent.

b.

$$A_sA_n = A_nA_s$$
 and $A = A_s + A_n$.

3.

Let A be a real $n \times n$ matrix such that $A^t = -A$. Prove that every eigenvalue of A is purely imaginary, i.e. if λ is an eigenvalue, then $\lambda = i\alpha, \alpha \in R$ and $i^2 = -1$.

4.

Let V be a finite-dimensional vector space over C. Let $T:V\to V$ be a nilpotent linear map. Prove that for every $i\in N$ we have

$$\dim(\ker T^{i+1}) - \dim(\ker T^i) \ge \dim(\ker T^{i+2}) - \dim(\ker T^{i+1}).$$

5.

Let V be a real vector space.

a.

Suppose that $J: V \to V$ a linear map such that $J^2 = -I$, where *I* is the identity map. Prove that **dim***V* is an even integer.

b.

Let
$$J_0$$
 be a $2n imes 2n$ matrix $\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$, where I_n is the $n imes n$ identity

matrix. Let A be a $2n \times 2n$ matrix such that $A^t J_0 A = J_0$. Prove that λ is an eigenvalue of A if and only if $\frac{1}{\lambda}$ is an eigenvalue of A.

[回上頁]