國立臺灣大學數學系114學年度碩士班甄試入學筆試線性代數

1. (20 points.) Let

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

be a matrix over \mathbb{R} . Find the Smith normal form of $xI_4 - A \in M(4, \mathbb{R}[x])$ and the Jordan normal form of A.

2. (20 points.) Let

$$A = \begin{pmatrix} 3 & -2 & -2 \\ -2 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}.$$

- (a) Find the maximum of X^tAX among all $X \in \mathbb{R}^3$ satisfying $X^tX = 1$. Give an example of X that attains the maximum.
- (b) Find the minimum of $tr(Y^tAY)$ among all 3×2 matrices Y over \mathbb{R} satisfying $Y^tY = I_2$. Give an example of Y that attains the minimum.
- **3.** (20 points.) Let A be an invertible matrix over \mathbb{C} . Prove that there is a polynomial p(x) in $\mathbb{C}[x]$ such that $A^{-1} = p(A)$.
- **4.** (20 points.) Let V and W be finite-dimensional vector spaces over \mathbb{R} with (positive definite) inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$, respectively. Let $T: V \to W$ be a linear transformation.
 - (a) Prove that for each $w \in W$, there exists a unique vector in V, denoted by T^*w , such that $\langle Tv, w \rangle_W = \langle v, T^*w \rangle_V$ for all $v \in V$ and show that $T^*: W \to V$ is a linear transformation.
 - (b) Verify that $(\operatorname{Im} T)^{\perp} = \ker T^*$.
 - (c) Prove that $\dim \ker T \dim \ker T^* = \dim V \dim W$.
- **5.** (20 points.) Let $T: V \to V$ be a linear transformation on a finite-dimensional vector space over an infinite field F. Prove that V is T-cyclic if and only if V has only finitely many T-invariant subspaces.