臺灣大學數學系112學年度碩士班甄試試題 科目:線性代數

2022, 10, 20

Notation: \mathbb{R} is the set of real numbers and \mathbb{C} is the set of complex numbers. If $F = \mathbb{R}$ or \mathbb{C} and n is a positive integer, we denote by $M_n(F)$ the set of $n \times n$ matrices with entries in F and by I_n the identity matrix in $M_n(F)$.

Problem 1 (15 pts). Let

$$\mathbf{v}_1 = (1, 2, 0, 4), \ \mathbf{v}_2 = (-1, 1, 3, -3), \ \mathbf{v}_3 = (0, 1, -5, -2), \ \mathbf{v}_4 = (-1, -9, -1, -4)$$

be vectors in \mathbb{R}^4 . Let W_1 be the subspace spanned by \mathbf{v}_1 and \mathbf{v}_2 and let W_2 be the subspace spanned by \mathbf{v}_3 and \mathbf{v}_4 . Find the dimension and a basis of $W_1 \cap W_2$.

Problem 2. Let

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 3 & -4 & 1 \\ 3 & -8 & 5 \end{pmatrix}.$$

(1) (10pts) Find an invertible matrix $Q \in M_3(\mathbb{C})$ such that

$$Q^{-1}AQ = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 12 \\ 0 & 1 & 1 \end{pmatrix}.$$

(2) (15pts) Find an invertible matrix $P \in M_3(\mathbb{C})$ such that $P^{-1}AP$ is a diagonal matrix.

Problem 3. For any $A \in M_2(\mathbb{C})$, define

$$\sin A = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} A^{2n+1}.$$

- (1) (5pts) Evaluate $\sin\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$.
- (2) (15pts) Prove or disprove: There exists $A \in M_2(\mathbb{R})$ such that

$$\sin A = \begin{pmatrix} 1 & 2022 \\ 0 & 1 \end{pmatrix}.$$

Problem 4 (20pts). Let $A = (a_{ij}) \in M_n(\mathbb{C})$ and let $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ be roots of characteristic polynomial of A (counted with multiplicity). Show that

$$AA^* = A^*A$$
 if and only if $\sum_{1 \le i,j \le n} |a_{ij}|^2 = \sum_{k=1}^n |\lambda_k|^2$.

Problem 5 (20pts). Let $A, B \in M_n(\mathbb{C})$. Suppose that all of the eigenvalues of A and B are positive real numbers. If $A^4 = B^4$, prove that A = B.