臺灣大學數學系 109 學年度碩士班甄試試題

科目:線性代數

2019.10.18

- 1. Let A be a 4×4 real symmetric matrix. Suppose that 1 and 2 are eigenvalues of A and the eigenspace for the eigenvalue 2 is 3-dimensional. Assume that $(1, -1, -1, 1)^t$ is an eigenvector for the eigenvalue 1. (Here v^t denotes the transpose of v.)
 - (a) Find an orthonormal basis for the eigenspace for the eigenvalue 2 of A. (10 points.)
 - (b) Find Av, where $v = (1, 0, 0, 0)^t$. (10 points.)
- **2.** Let A be a real $n \times n$ matrix. Prove that

$$\operatorname{rank}(A^2) - \operatorname{rank}(A^3) \le \operatorname{rank}(A) - \operatorname{rank}(A^2).$$

(10 points.)

- 3. Let V be a vector space of finite dimension over \mathbb{R} and S, T, and U be subspaces of V. Prove or disprove (by giving counterexamples) the following statements:
 - (a) $\dim(S+T) = \dim S + \dim T \dim(S \cap T)$. (10 points.)
 - (b) $\dim(S + T + U) = \dim S + \dim T + \dim U \dim(S \cap T) \dim(T \cap U) \dim(U \cap S) + \dim(S \cap T \cap U)$. (10 points.)
- **4.** (a) Let $A = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$. Compute $\exp A$. (10 points.)
 - (b) Prove that $\det(\exp A) = \exp(\operatorname{tr} A)$ for $A \in M(n, \mathbb{C})$. (10 points.)
 - (c) Prove or disprove (by giving counterexamples) that if A is nilpotent, then so is $\exp A I_n$. Here a matrix M is said to be nilpotent if $M^k = 0$ for some positive integer k and I_n is the identity matrix of size n. (10 points.)
- **5.** Let U and V be finite-dimensional vector spaces, and U^* and V^* be their dual spaces, respectively. For a linear transformation $T:U\to V$, define $T^*:V^*\to U^*$ by $(T^*f)(u)=f(Tu)$ for $f\in V^*$ and $u\in U$.
 - (a) Prove that T is injective if and only if T^* is surjective. (10 points.)
 - (b) Prove that T is surjective if and only if T^* is injective. (10 points.)