臺灣大學數學系 102 學年度碩士班甄試試題 科目:線性代數

2012.10.19

•

1. [20%] Let V be an n-dimensional vector space over a field. Let $T: V \to V$ be a linear map. Show that the degree of the minimal polynomial of T equals

$$\max_{v \in V} \left\{ \dim(v, T(v), T^2(v), \cdots, T^{n-1}(v)) \right\}.$$

(Here $\langle w_1, \cdots, w_r \rangle$ denotes the subspace spanned by w_1, \cdots, w_r .)

- 2. [20%] Consider the real $n \times n$ matrix $A = (a_{ij})$ satisfying
 - $a_{ij} \ge 0$ for all i, j,
 - $a_{ii} = 0$ for all i, and
 - $\sum_{j=1}^{n} a_{ij} = \gamma$ for all $i = 1, 2, \dots, n$ for some constant $\gamma \neq 0$.

Show that

- (a) If $\lambda \in \mathbb{R}$ is a real eigenvalue of A, then $-\gamma \leq \lambda \leq \gamma$.
- (b) γ is an eigenvalue of A and the corresponding eigenspace has dimension one.
- (c) The eigenspace corresponding to $-\gamma$ has dimension either zero or one.
- 3. [20%] Let $A = (a_{ij})$ be a real $n \times n$ symmetric matrix. Show that A is positive definite (meaning: $v^t A v > 0$ for any non-zero $v \in \mathbb{R}^n$ where v^t is the transport of v) if and only if, for any $r = 1, 2, \dots, n$, we have

det $A_r > 0$ where $A_r = (a_{ij})_{1 \le i,j \le r} \in M_r(\mathbb{R})$.

- 4. [20%] Let $T: V \to W$ be a linear map between two finite dimensional vector spaces. Let V^* and W^* be the dual spaces of V and W, respectively. Prove that
 - (a) T is injective if and only if the transport $T^*: W^* \to V^*$ is surjective.
 - (b) T is surjective if and only if the transport $T^*: W^* \to V^*$ is injective.

(Recall that the transport T^* is defined by $(T^*(f))(v) = f(T(v))$ for $f \in W^*, v \in V$.)

5. [20%] Let A be a real $n \times n$ matrix such that $A^t = -A$ (where A^t denotes the transport of A). Let $\lambda = a + bi$ be a complex eigenvalue of A where $a, b \in \mathbb{R}$ and $i^2 = -1$. Show that a = 0.