臺灣大學數學系 100 學年度碩士班甄試試題

科目:線性代數

2010.10.22

- (1) (20 %) Let \mathbb{F}_p be the field of p elements, V be an n-dimensional vector space over \mathbb{F}_p , and let $1 \leq m \leq n$. Find the number of m-dimensional subspaces of
- (2) (20 %) Let V be an F-vector space with basis $B = \{v_1, \ldots, v_n\}$, and V^* be the space of all linear functions $f: V \to F$. V^* has a basis $B^* = \{f_1, \dots, f_n\}$ where $f_i(v_j) = \delta_{ij}$.

Let V and W be F-vector spaces with bases B and C, respectively. Let $T:V\to W$ be a linear transformation and A be the matrix representation of T in the bases B and C. Define the linear transformation $T^*: W^* \to V^*$ by $T^*(g)(v) = g(Tv)$ for $g \in W^*, v \in V$.

What is the matrix representation of T^* in the bases C^* and B^* ?

- (3) (20 %) Let A be a square matrix of dimension n over a field. Show that
 - (a) if rank A = n, then rank adj A = n;
 - (b) if rank A = n 1, then rank adj A = 1;
 - (c) if rank A < n 1, then rank adj A = 0.
- (4) (20 %) Let the matrix

$$A = \begin{bmatrix} 0 & 0 & \cdots & \cdots & 0 & a_1 \\ 0 & 0 & \cdots & \cdots & a_2 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & a_{n-1} & \cdots & \cdots & 0 & 0 \\ a_n & 0 & \cdots & \cdots & 0 & 0 \end{bmatrix} \in M_n(\mathbb{C})$$

Show that A is diagonalizable if and only if for each k = 1, 2, ..., n, if $a_k = 0$, then $a_{n+1-k} = 0$.

- (5) (20 %) Let (V, \langle , \rangle) be an inner product space. Let $\{v_1, \ldots v_n\}$ be an orthonormal subset of $V, x \in V$.
 - (a) Show that $\sum_{k=1}^{n} |\langle x, v_k \rangle|^2 \le ||x||^2$.
- (b) Let W be the subspace generated by $\{v_1, \ldots v_n\}$. Show that the following statements are equivalent:
 - (i) $x \in W$.

 - (i) $x \in V$. (ii) $x = \sum_{k=1}^{n} \langle x, v_k \rangle v_k$. (iii) For any $y \in V$, $\langle x, y \rangle = \sum_{k=1}^{n} \langle x, v_k \rangle \langle v_k, y \rangle$.