臺灣大學數學系 九十六學年度碩士班甄試試題 科目:微積分與線性代數 2006.11.3 ## Calculus and Linear Algebra (1) (10%) The implicit function z = z(x, y) satisfies $$x^{2} + y^{2} + z^{2} - xz - yz + 2x + 2y + 2z - 2 = 0.$$ Find the extreme values of z. - (2) (10%) Find the integral $\iint_{\mathbb{R}^2} e^{ax^2+bxy+cy^2} dxdy$ where $a < 0, b^2 < 4ac$. - (3) (20%) Test the convergence. (a) $\sum_{n=1}^{\infty} \frac{1}{n} \ln(1+\frac{1}{n})$. (b) $\int_{0}^{\infty} \frac{\sin t}{\sqrt{t}} dt$. - (4) (10%) Solve the system of differential equations. $$\begin{cases} \frac{dy}{dx} = 7y - z\\ \frac{dz}{dx} = 2y + 5z \end{cases}$$ (5) (20%) Let V be an n-dimensional real inner product space. (a) Let T be a linear operator on V. Show that there is a nontrivial T-invariant subspace W such that dim $W \leq 2$. (b) Let T be an orthogonal operator on V. Show that T can be expressed as the composition of at most one reflection and at most $\frac{n}{2}$ rotations. - (6) (15%) Let A = (a_{ij}) ∈ M_n(C). Define ||A|| = max_{i,j} |a_{ij}|. Show that there is a matrix B arbitrary close to A such that B has n distinct eigenvalues. - (7) (15%) Let V be the vector space of polynomials with real coefficients and degree ≤ n. Define the inner product ⟨f₁, f₂⟩ = ∫₀¹ f₁(x)f₂(x)dx. Let M = {xⁿ + a₁xⁿ⁻¹ + · · · + a_{n-1}x + a_n|a_i ∈ ℝ} ⊂ V. Find the distance from the origin to M.