臺灣大學數學系

九十二學年度碩士班甄試入學試題 微積分與線性代數 Nov 29, 2002

[回上頁]

1.

(20 points) Consider the following two-variable function

$$f(x,y) = \begin{cases} 2x^2y/(x^2+y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

(a)

(10 points) is the function f(x, y) continuous at (x, y) = (0, 0)?

(b)

(10 points) is the function f(x, y) differentiable at (x, y) = (0, 0)?

2.

(10 points) Find the shortest distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 = 225$.

3.

(10 points) Compute the surface integral

$$\int \int_{\mathcal{S}} \mathcal{F} \cdot \vec{N} \, d\sigma,$$

where $\mathcal{F} = \langle 2x, y, 2z \rangle$, \mathcal{S} is the surface of the region bounded by the cylinder $x^2 + y^2 = 16$, the xy plane, and the z = 2 plane, and \vec{N} is the outward unit normal vector on \mathcal{S} . 160π

4.

(10 points) Compute the line integral

$$\oint_{\mathcal{C}} \mathcal{F} \cdot \vec{T} \, ds,$$

where $\mathcal{F} = \langle z, 4x, 2z \rangle$, \mathcal{C} is the bounding curve of the surface of the paraboloid

 $z=9-(x^2+y^2)$ above the xy plane, and $ec{T}$ is the directed unit tangent vector along ${\cal C}$.

5.

(20 points)Given an $n \times n$ matrix A with real entries such that $A^2 = -I$. Prove the following statements about A.

(a)

(10 points) A is nonsingular.

(b)

(10 points)A has no real eigenvalues.

6.

(15 points)Find the Jordan canonical form of the following matrix

$$A = \left[\begin{array}{rrr} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{array} \right]$$

7.

(15 points)Show that the transformation defined by $T(x_1, x_2, x_3, x_4)$ =

 $(x_1 + x_2 - 3x_3 - x_4, 3x_1 - x_2 - 3x_3 + 4x_4, 0, 0)$ is a linear transformation on 4-dimensional linear space R^4 , and find rank of T and kernel of T.

[回上頁]