臺灣大學數學系

八十七學年度碩士班甄試入學考試試題

高等微積分

[回上頁]

1.

- 1. Is the function $f(x) = \sqrt{x}\sin(1/x), x > 0$, uniformly continuous on the interval (0,1] ?Prove your answer.
- 2. For what value of α the function $f(x)=|x|^{\alpha}\sin(1/x)$ for $x\neq 0$ and f(0)=0 is differentiable at x=0?
- 2. Let $x_1 = c$, and for $n \ge 2$, define the sequence x_n by

$$x_n = \frac{7}{8}x_{n-1} + \frac{1}{8}.$$

For what real value of c does the sequence x_n converge? To what limit does it converge? What can you say about the rate of convergence?(Justify your answer!)

- 3. 1. Find the rectangular parallelepiped of greatest volume inscribed in the ellipsoid: $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$
 - 2. Describe and prove the Lagrange's method of undetermined multiplier for the extremal problem with constraint, namely, find the extreme value of a function f(x, y, z) under the constraint g(x, y, z) = 0.
- 4. For what values of a, b, c the integral

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{ax^2 + 2bxy + cy^2} dx dy$$

converges as an improper integral. Find the value of this integral when it exists.

5. Let u a smooth solution of $u_{xx}+u_{yy}=u$ in a smooth domain D in \mathbb{R}^2 . Show that

$$\int_{D} u \frac{\partial u}{\partial n} \ge 0$$

where n is the unit outer normal to the boundary ∂D . Show that equality holds if and only if u=0.

- 6.
- 1. Show that the function $f(x) = \tan x x$ has for a positive integer n exactly one root $x = x_n$ in the interval $n\pi < x < (n + \frac{1}{2})\pi$.
- 2. Show that

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + o(\frac{1}{n}).$$