臺灣大學數學系

八十六學年度碩士班甄試入學考試試題

高等微積分(甲組)

[回上頁]

1.

a) Let f(x, y) be a real-valued function defined on R^2 . Give (sufficient) conditions of f_x and f_y under which f is differentiable at $\mathbf{x}_0 = (x_0, y_0) \in R^2$. State it as a theorem and prove it.

b)

(60)

Check that whether the function g is differentiable at the origin, where $g(x,y) = \frac{\sin(x^4+y^4)}{x^2+y^2}$ if

$$(x,y) \neq (0,0)$$
, and $g(0,0) = 0$.

C)

Let $H: R^2 \to R^2$ such that $H(x, y) \equiv (x^3 - 2xy + y, x^2 + y)$. Find the Jacobian matrix H'(1, 1) of H at (1,1). Evaluate ||H'(1, 1)||. Here for a linear transformation $T: R^2 \to R^2$ its operator norm is defined as $||T|| \equiv \max\{||T(\mathbf{x})||_2; ||\mathbf{x}||_2 = 1, \mathbf{x} \in R^2\}$, where

 $\|\mathbf{x}\|_2 = \sqrt{x^2 + y^2}$ for $\mathbf{x} = (x, y) \in R^2$.

d)

State the inverse function theorem regarding the system of transformations u = p(x, y), v = q(x, y). No proof is needed. Next consider solving the equations (same as given in c))

$$u = x^3 - 2xy + y,$$

$$v = x^2 + y$$

for (x, y) given (u, v). Show that when |u|, |v - 2| are small the system has a unique solution near x = y = 1.

2.

(24) Let
$$\mathcal{D}_1 = \{(x_1, \ldots, x_n) | x_1^2 + \cdots + x_n^2 \leq 1\}$$
 and $\mathcal{D}_2 = \{(x_1, \ldots, x_n) | x_1^2 + \cdots + x_n^2 \geq 2\}$
Find the range of $p, q \in R$ such that the following two improper integrals $I_1(p), I_2(q)$ converge:

$$I_1(p) = \int \cdots \int_{\mathcal{D}_1} \frac{dx_1 \cdots dx_n}{(1 - \cos\sqrt{x_1^2 + \dots + x_n^2})^p}, \quad I_2(q) = \int \cdots \int_{\mathcal{D}_2} \frac{dx_1 \cdots dx_n}{(x_1^2 + \dots + x_n^2)^q \ln\sqrt{x_1^2 + \dots + x_n^2}}$$

3.

(16) Let S be the set of continuously differentiable functions f(x,y) defined on

 $\mathcal{D} = \{(x,y)|x^2+y^2 \leq 1\}$ and put for any such function the integral

$$I(f) = \int \int_{\mathcal{D}} \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right] \, dx dy.$$

Show that if $\varphi \in S$ is twice continuously differentiable and satisfies $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \equiv 0$ in the interior of \mathcal{D} , then for any $u \in S$, vanishing on the boundary of \mathcal{D} , one has

$$I(\varphi + u) \ge I(\varphi).$$

[回上頁]