臺灣大學數學系 九十九學年度碩士班甄試試題 科目:高等微積分

2009.10.30

- (1) (25 pts) Define f(0,0) = 0 and $f(x,y) = \frac{x^3}{3x^2 + y^2}$, $(x,y) \neq (0,0)$.
 - (a) Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0) and f is continuous at (0,0).
 - (b) Prove that f is not differentiable at (0,0).
 - (c) Is f^2 differential at (0,0)?
- (2) (25 pts) Assume a > 0 and b > 0. Find all (a, b) such that $\frac{\sin(x^a)}{1 + x^b}$ is uniformly continuous on $\{x : x > 0\}$.
- (3) (25 pts)

(a) Let $\{b_n\}$ be defined by $b_1 = 1$; $b_{2m} = \frac{b_{2m-1}}{4}$; $b_{2m+1} = 1 + b_{2m}$. Find $\limsup_{n \to \infty} b_n$ and $\liminf_{n \to \infty} b_n$.

(b) Let $\{c_n\}$ and $\{d_n\}$ be two strictly increasing sequences of positive integers satisfying $c_n + d_n < 1.5n$. Define p(m) = 1 if $m \in \{c_n\}$, p(m) = 0 if $m \notin \{c_n\}$; q(m) = 1 if $m \in \{d_n\}$, q(m) = 0 if $m \notin \{d_n\}$, where m is a positive integer. Find $\limsup_{m\to\infty}(p(m)+q(m))$.

(4) (25 pts)

(a) Let f(x) be an increasing function on [0,1]. Prove that f is Riemann integrable.

(b) Assume g(x,y) < g(x,z) if y < z and g(x,y) < g(t,y) if x < t. Prove or disprove that the assumptions above imply g(x,y) is Riemann integrable on $[0,1] \times [0,1]$.