臺灣大學數學系 九十七學年度碩士班甄試試題 科目:高等微積分

2007.11.02

1. (20 pts) Given a, b, c > 0. What is the volume enclosed by the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1?$$

- # 2. (20 pts) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Suppose that f(0) = 0 and f'(x) > f(x) for $x \in \mathbb{R}$. Can $f(c) \le 0$ for some c > 0? Prove or disprove your answer.
- # 3. (30 pts) Consider the system of equations

$$3x + y - z + u4 = 0$$

$$x - y + 2z + u = 0$$

$$2x + 2y - 3z + 2u = 0$$

- (i) Prove that for some $\epsilon > 0$, the system can be solved for (x, y, u) as a function of $z \in [-\epsilon, \epsilon]$, with x(0) = y(0) = u(0) = 0. Are such functions x(z), y(z), u(z) continuous? differentiable? unique? (15 pts)
- (ii) Can the system be solved for (x, y, z) as a function of $u \in [-\delta, \delta]$ for all $\delta > 0$? (15 pts)

Prove or disprove all your answers.

4. (15 pts) Suppose that $f:[0,1]\to\mathbb{R}$ satisfies

$$\lim_{x \to c} f(x) \in \mathbb{R} \,, \quad \forall c \in (0, 1) \,,$$

and $f(0+) = \lim_{x\to 0+} f(x)$, $f(1-) = \lim_{x\to 1-} f(x) \in \mathbb{R}$. Can f be Riemann integrable on [0,1]? Prove or disprove your answer.

5. (15 pts) Let $u: \mathbb{R}^2 \to \mathbb{R}$ be analytic and nonconstant. Suppose

$$u_y = u_{xx}$$
 for $x, y \in \mathbb{R}$.

Can the function u have a local maximum point at $(x_0, y_0) \in \mathbb{R}^2$? Prove or disprove your answer.