臺灣大學數學系

九十二學年度碩士班甄試入學試題

高等微積分

Nov 29, 2002

[回上頁]

1.

4.

 $\int \int_{B^2} \frac{1}{[2+(3x-y+1)^2+(x+y-1)^2]^2} dxdy = ?(25/100)$ 2. Let $f_k(x) = a_{k,0} + a_{k,1}x + a_{k,2}x^2 + \dots + a_{k,k}x^k$ $a_{k,l} \geq 0$, $\sum_{l=0}^{k} a_{k,l} = 2$, Show that there is a subsequence $\{f_{k_j}(x)\}$ of $\{f_k(x)\}$ which converges uniformly on $0 \le x \le 1/2$. (25/100) 3.

Let f(x) be a continuous function on $[0,\infty)$ and there exist constants M>0 , P>0such that $|f(x)| \leq MX^p$ for all X > 1. Compute

$$\lim_{n \to \infty} n \int_0^\infty f(x) e^{-nx} dx$$

(justify your answer) (25/100)

Suppose $A(x) = \begin{pmatrix} a_{11}(x) & a_{12}(x) \\ a_{21}(x) & a_{22}(x) \end{pmatrix}$ is a 2 × 2 matvix of complex-valued functions,

 $X \in \mathbb{R}$. $a_{ij}(x)$ are C^1 in a nerghborhood of $x_0 \in \mathbb{R}$. Assume that $\lambda_1(x_0)$ and $\lambda_2(x_0)$ are eigenvalues of $A(x_0), \ \lambda 1(x_0) \neq \lambda_2(x_0)$ Show that near x_0 there exists a matrix function P(X) with C' elements and two scalar C' functions $\lambda_1(x)$, $\lambda_2(x)$ such that

$$P^{-1}(x)A(x)P(x) = \begin{pmatrix} \lambda_1(x) & 0\\ 0 & \lambda_2(x) \end{pmatrix}$$
 Give an example to show that this is not true of $\lambda_1(x_0) = \lambda_2(x_0)$ (25/100)

[回上頁]