國立臺灣大學數學系114學年度碩士班甄試入學筆試高等微積分

I. Let $x = (x_1, x_2, x_3)$ be coordinates of \mathbb{R}^3 . Let

$$f(x) = \frac{x_1^3 + x_2^2 + i\ln(1 + x_2^2 + x_3^2)}{x_1^2 + x_2^2 + ix_3^2\sin(\frac{x_1}{x_3})} \text{ if } x_1x_2x_3 \neq 0,$$

$$f(x) = 0 \text{ if } x_1x_2x_3 = 0,$$

be a function on \mathbb{R}^3 , where ln is the natural logarithm, that is the inverse function of e^x and $i = \sqrt{-1}$. Is f a continuous function on \mathbb{R}^3 ? If not, find all $(a, b, c) \in \mathbb{R}^3$ such that f(x) is not continuous at (a, b, c). (15 pts)

II. Let $x = (x_1, x_2, x_3)$ be coordinates of \mathbb{R}^3 . Let

$$f(x) = \frac{x_1^3 + e^{-\frac{1}{x_2^2}} + i\sin^2 x_3^2}{x_1^2 + x_2^2 + ix_3^3} \text{ if } x_1 x_2 x_3 \neq 0,$$

$$f(x) = 0 \text{ if } x_1 x_2 x_3 = 0,$$

be a function on \mathbb{R}^3 . Is f differentiable at (0,0,0)? (10 pts)

In the following, we will use the following notations: let U be an open set of \mathbb{R}^n . Let $\mathcal{C}^k(U)$ be the space of k-times continuously differentiable functions on $U, k \in \mathbb{N} \cup \{0\}$. Let $\mathcal{C}^{\infty}(U) := \bigcap_k \mathcal{C}^k(U)$.

- III. Let $f(x,y) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times \mathbb{R}^m)$, where $x = (x_1, \dots, x_n)$ denotes the coordinates in \mathbb{R}^n , $y = (y_1, \dots, y_n)$ denotes the coordinates in \mathbb{R}^m . Suppose that f(0,0) = 0, $\frac{\partial f}{\partial x_j}(0,0) = 0$, $j = 1, \dots, n$ and the matrix $\left(\frac{\partial^2 f}{\partial x_j \partial x_\ell}(0,0)\right)_{j,\ell=1}^n$ is invertible.
 - (a) Show that there is an open set V of $0 \in \mathbb{R}^m$ and a smooth function $g: V \to \mathbb{R}^n$, such that $\frac{\partial f}{\partial x_j}(g(y), y) = 0$, for every $y \in V$. (10 pts)
 - (b) Show that there are open sets Ω , Ω_1 of $0 \in \mathbb{R}^n$ in \mathbb{R}^n and a smooth function $H:\Omega_1 \to \mathbb{R}$, such that

$$\{(x_1, \dots, x_n, \frac{\partial f}{\partial x_1}(x, 0), \dots, \frac{\partial f}{\partial x_n}(x, 0)); x \in \Omega\}$$

$$= \{(\frac{\partial H}{\partial \xi_1}(\xi), \dots, \frac{\partial H}{\partial \xi_n}(\xi), \xi_1, \dots, \xi_n); \xi \in \Omega_1\}.$$
(10 pts)

- IV. Let U be an open set in \mathbb{R}^n . Let $f_k:U\to\mathbb{R},\ k=1,2,\ldots$, be functions on U. Let $f:U\to\mathbb{R}$ be a function on U.
 - (a) Please give a precise meaning of " f_k converges uniformly to f on U as $k \to +\infty$ ". (5 pts)

(b) Let

$$f_k(x) = k^{\frac{n}{2}} \int_{\mathbb{R}^n} e^{-k(|x-y|^2 + |x-y|^4) + i \sum_{j=1}^n x_j^2 y_j} dy,$$

where $|x-y|^2 = \sum_{j=1}^n |x_j - y_j|^2$, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$. Show that there is a function $f(x) : \mathbb{R}^n \to \mathbb{R}$ such that for every compact set $K \subset \mathbb{R}^n$, f_k converges uniformly to f on K as $k \to +\infty$. Can you find f(x)? (15 pts)

(c) Let

$$f_k(x) = k^{\frac{n}{2}} \int_{|y| < M} e^{-k(|x-y|^2 + |x-y|^4) + i \sum_{j=1}^n x_j^2 y_j} dy,$$

where M > 0 is a constant, $M < +\infty$, $|x - y|^2 = \sum_{j=1}^n |x_j - y_j|^2$, $x = (x_1, \dots, x_n), \ y = (y_1, \dots, y_n)$. Show that f_k converges uniformly to a function $f(x) : \mathbb{R}^n \to \mathbb{R}$ on \mathbb{R}^n as $k \to +\infty$. (15 pts)

V. Let U be an open set of \mathbb{R} . Let $f_k: U \to \mathbb{R}$ be smooth function on U, $k = 1, 2, \ldots$ Assume that for every compact set $K \subset U$ and every $m \in \mathbb{N} \cup \{0\}$, there is a constant $C_{K,m} > 0$ such that

$$\sup \left\{ \left| \left(\frac{d^m f_k}{dx^m} \right)(x) \right| ; x \in K \right\} \le C_{K,m},$$

for every $k = 1, 2, \ldots$ Suppose that $\lim_{k \to +\infty} f_k(x) = f(x)$, for every $x \in U$, where $f: U \to \mathbb{R}$ is a function on \mathbb{R} . Show that

- (a) f(x) is a smooth function on U, i.e. $f(x) \in \mathcal{C}^{\infty}(U)$. (10 pts)
- (b) For every $m \in \mathbb{N} \cup \{0\}$, every compact subset $K \subset U$, $\frac{d^m f_k}{dx^m}(x)$ converges to $\frac{d^m f}{dx^m}(x)$ uniformly on K. (10 pts)