臺灣大學數學系113學年度碩士班甄試筆試試題

科目:高等微積分

2023.11.02

- 1. (15%) If every closed and bounded set of a metric space (M,d) is compact, does it follow that (M,d) is complete? If your answer is "yes", prove it; if your answer is "no", give a counter-example.
- 2. (20%) Determine the values of h for which the following series converges uniformly on $I_h = \{x \in \mathbb{R} : |x| \leq h\}$:

$$\sum_{n=1}^{\infty} \frac{(n!)^2 x^n}{(2n)!} .$$

Show your work.

3. (10%+10%+5%) Consider

$$(\star) \qquad F(x) = \int_0^\infty \frac{e^{-xt} - e^{-t}}{t} \, \mathrm{d}t$$

on $I = \{ x \in \mathbb{R} : \frac{1}{2} \le x \le 2 \}.$

- (a) Show that (\star) converges on I, and F(x) is continuous on I.
- (b) Show that

$$F'(x) = \int_0^\infty -e^{-xt} \, \mathrm{d}t \ .$$

- (c) Evaluate F(x).
- 4. (5%+15%) Let f be a smooth function on \mathbb{R}^n with det $([\frac{\partial^2 f}{\partial x_i \partial x_j}]_{1 \leq i,j \leq n}) = 2$ everywhere.
 - (a) Show that there exist an open neighborhood $U \subset \mathbb{R}^n$ of the origin and an open set $V \subset \mathbb{R}^n$ such that $\mathbf{x} = (x_1, \dots, x_n) \mapsto Df(\mathbf{x}) = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ is a bijection map from U and V, and its inverse is also a smooth map.
 - (b) Denote the inverse map in part (a) by $\boldsymbol{\xi}(\mathbf{y}) = (\xi_1(\mathbf{y}), \dots, \xi_n(\mathbf{y}))$. For any $\mathbf{y} \in V$, let

$$f^*(\mathbf{y}) = -f(\boldsymbol{\xi}(\mathbf{y})) + \sum_{i=1}^n y_i \, \xi_i(\mathbf{y}) .$$

Compute det $\left(\left[\frac{\partial^2 f^*}{\partial y_i \partial y_i}\right]_{1 \le i, j \le n}\right)$.

5. (20%) Let f(x) be a C^1 function for $x \in [0, \infty)$. Suppose that $f(x) \ge 0$ and $f'(x) \le 1$ for every $x \ge 0$, and $\int_0^\infty f(x) dx$ converges. Does $\lim_{x\to\infty} f(x)$ exist? If your answer is "yes", determine the limit and prove it; if your answer is "no", give a counter-example.