臺灣大學數學系 108 學年度碩士班甄試試題

科目:高等微積分 2018.10.19

(1) [10 分] Does the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n \log(n+1)}{n}$$

converge? Does it converge absolutely? Justify your answer.

(2) [10+10 分] Consider the function

$$f(x,y) = \frac{1}{(1-xy)^2}$$

defined on $\Omega = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1, (x, y) \ne (1, 1)\}.$

- (a) For any $\kappa \in (0,1)$, let $U_{\kappa} = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le \kappa, 0 \le y \le \kappa\}$. Is f(x,y) uniformly continuous on U_{κ} ? Justify your answer.
- (b) Is f(x, y) uniformly continuous on Ω ? Justify your answer.
- (3) $[10+15 \ \%]$ For any $n \in \mathbb{N}$, consider $f_n(x) = n x^n (1-x)$ on $I = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$.
 - (a) Determine $\lim_{n\to\infty} f_n(x)$ for every $x\in I$.
 - (b) Is the convergence uniform on I? Give your reason.

(4) [15+10 分] Let

$$F(x) = \int_0^\infty \frac{1 - \cos(xt)}{t^2 e^t} dt.$$

- (a) Can you switch the order of integration and differentiation to obtain the formulae for F'(x) and F''(x)? Explain the reason.
- (b) Find the explicit formula for F'(x) and F(x).

(5) [10+10 分] Consider

$$F: \mathbb{R}^4 \to \mathbb{R}^2$$

$$(x, y, u, v) \mapsto \left(\int_{x-y^2}^{x^2+y} (e^{t^2} + u) dt, x^3 + v \right).$$

- (a) Prove that near (1, 1, 0, 0), the two equations $F(x, y, u, v) = (\int_0^2 e^{t^2} dt, 1)$ can be solved for u, v as continuously differentiable functions of x, y.
- (b) For the functions u(x,y) and v(x,y) in part (a), find all their first order partial derivatives at (x,y)=(1,1).

¹Not an improper integral.