臺灣大學數學系 106 學年度碩士班甄試試題 科目:高等微積分

1. (15 points) Let A be the unit ball $B_1(0)$ in \mathbb{R}^3 . Compute

$$\int_{A} \cos(x+y+z) \, dx \, dy \, dz$$

2. Let f be a real-valued function on **R** which has period 2π and is Riemann integrable on $[-\pi, \pi]$. We define its Fourier coefficients

$$a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \ (n = 0, 1, 2, \dots) \text{ and } b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx \ (n = 1, 2, \dots).$$

(1) (10 points) Show that $f(x)^2$ is Riemann integrable on $[-\pi, \pi]$.

(2) (15 points) Show that the series $\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty}(a_n^2 + b_n^2)$ converges.

3. (1) (15 points) Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers and let $B_n = b_1 + \cdots + b_n \ (n \in \mathbb{N})$. Suppose that $a_n \searrow 0$ as $n \to \infty$ and that there exists M > 0 such that $|B_n| \leq M$ for every $n \in \mathbb{N}$. Show that the series $\sum_{n=1}^{\infty} a_n b_n$ converges. (2) (10 points) Show that the function series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin(nx)$$

converges uniformly on [-K, K] if $|K| < \pi$.

4. Definition. Let \mathcal{F} be a set of real-valued functions on a set X. \mathcal{F} is uniformly bounded if there exists M > 0 such that $|f(x)| \leq M$ for every $x \in X$ and every $f \in \mathcal{F}$.

(20 points) Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of convex functions on [-2, 2] and let $f_n = F_n|_{[-1,1]}$ $(n \in \mathbb{N})$. Suppose that $\{F_n \mid n \in \mathbb{N}\}$ is uniformly bounded. Show that there exists a subsequence of $\{f_n\}_{n=1}^{\infty}$ which is uniformly convergent on [-1, 1].

5. (15 points) Let $f = (f_1, \ldots, f_n) : U \to \mathbf{R}^n$ be a C^1 map from an open set U in \mathbf{R}^n , and let $g: V \to U$ be a continuous map from an open set V in \mathbf{R}^n . Suppose that

$$\det\left(\frac{\partial f_j}{\partial x_k}(x)\right) \neq 0 \quad \text{for every } x \in U,$$

and that f(g(x)) = x for every $x \in V$. Show that g is C^1 .