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Advanced Calculus

1. (40 points) True or False. Prove or disprove each of the following statements.

a) If the real series ) 22, b; = 1 is conditional convergent (which is not ab-
solutely convergentg, then there exist a rearrangement of {b;} such that
g1 bo(j) = 2012, where {0(5)}$2, is a permutation of {j}52,

b) If, for some positive number M > 0, the partial sum IZ 10il £ M for
all n € N and {a;}$2, is a positive decreasing sequence that tends to 0,
then 3722 | a;b; converges.

c) If f(z) is a continuous function defined on the closed interval [—1, 1] such
that f’(0) = 1, then there exists a § > 0 such that f(z) is an increasing
function for all z € [-4, d].

d) Suppose g(z) is a nonnegative continuous function defined on the closed
interval [0,1] and f(z) is a positive monotone continuous function, then
there exists a number £ € [0, 1] such that
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2. (50 points) Evaluate
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where A is the region in R® bounded by the planes z = 0, y = 0, z = 2 and the

surface z = 22 + 32

3. (10 points) Find the maximum of f(z,y, 2z) = x+y+2z under the constraints
:162—:zcy—i-y2+z2 = 2.

At which point does f(z,y, z) achieve its maximum ?



