臺灣大學數學系 102 學年度碩士班甄試試題 科目:高等微積分

Advanced Calculus

- 1. (40 points) True or False. Prove or disprove each of the following statements.
 - a) If the real series $\sum_{j=1}^{\infty} b_j = 1$ is conditional convergent (which is not absolutely convergent), then there exist a rearrangement of $\{b_j\}$ such that $\sum_{j=1}^{\infty} b_{\sigma(j)} = 2012$, where $\{\sigma(j)\}_{j=1}^{\infty}$ is a permutation of $\{j\}_{j=1}^{\infty}$.
 - b) If, for some positive number M > 0, the partial sum $|\sum_{j=1}^{n} b_j| \leq M$ for all $n \in \mathbb{N}$ and $\{a_j\}_{j=1}^{\infty}$ is a positive decreasing sequence that tends to 0, then $\sum_{j=1}^{\infty} a_j b_j$ converges.
 - c) If f(x) is a continuous function defined on the closed interval [-1, 1] such that f'(0) = 1, then there exists a $\delta > 0$ such that f(x) is an increasing function for all $x \in [-\delta, \delta]$.
 - d) Suppose g(x) is a nonnegative continuous function defined on the closed interval [0, 1] and f(x) is a positive monotone continuous function, then there exists a number $\xi \in [0, 1]$ such that

$$\int_0^1 f(t)g(t)dt = f(\xi) \int_0^1 g(t)dt.$$

2. (50 points) Evaluate

$$\int_{0}^{1} x^{9} (10 \ln x + 1) dx, \qquad \int_{2}^{4} \int_{4/x}^{(20-4x)/(8-x)} (y - 4) dy dx,$$
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} dy dx, \qquad \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n+i},$$
$$\int_{A} x dx dy dz,$$

where A is the region in \mathbb{R}^3 bounded by the planes x = 0, y = 0, z = 2 and the surface $z = x^2 + y^2$.

3. (10 points) Find the maximum of f(x, y, z) = x + y + 2z under the constraints

$$x^2 - xy + y^2 + z^2 = 2.$$

At which point does f(x, y, z) achieve its maximum ?