臺灣大學數學系 100 學年度碩士班甄試試題 科目:高等微積分

2010.10.22

(1) (25 pts) Suppose the series $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges for |x| < R. Show that f is continuous and differentiable on (-R, R) and

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} \text{ for } |x| < R.$$

(2) (25 pts) Let $\{f_n\}$ and f be defined on [0,2). Suppose that $\{f_n\}$ are continuous and

$$\lim_{n\to\infty} f_n(x_n) = f(x)$$

 $\lim_{n\to\infty} f_n(x_n) = f(x)$ for every sequence $\{x_n\}\subset [0,2)$ such that $\lim_{n\to\infty} x_n = x$ and $x\in$

(a) Is it true that $\{f_n\}$ converges uniformly to f on [0,2)? (b) Is it true that f is continuous on [0,2)?

(3) (25 pts)

(a) Prove that

$$\left| \int_0^1 f(x)g(x) \, dx \right| \le \left(\int_0^1 f^2(x) \, dx \right)^{\frac{1}{2}} \left(\int_0^1 g^2(x) \, dx \right)^{\frac{1}{2}}.$$

(b) Let h(x) be a continuous function on [0,1]. Show that

$$\lim_{n\to\infty}\int_0^1 h(x)\sin(nx)\,dx=0.$$

(4) (25 pts) Let $\mathbb{N} = \{1, 2, 3, ...\}$ denote the natural numbers and E be defined as follows: $A \in E$ if and only if A is a subset of N. Show that there is a one-to-one and onto mapping from E to the open interval (0,1).