- 1. Let X_1, \dots, X_n be a random sample from a distribution with c.d.f F and a continuous p.d.f. f. Given $0 , let <math>\eta_p$ be the *p*-th quantile of F and $X_{(k)}$ be the *k*-th order statistic of the sample such that $k/n \to p$.
 - (a) (10%) State the asymptotic distribution of $X_{(k)}$ and a set of sufficient conditions.
 - (b) (20%) Proof the result in (a).
- 2. Let X_1, \dots, X_n be a random sample from a distribution with p.d.f.

$$f(x,\theta) = c(\theta) \{1 - e^{-|x|}\} I(|x| \le \theta),$$

where $c(\theta)$ is a normalizing constant.

- (a) (10%) Find the maximum likelihood estimator of θ and denote it as $\hat{\theta}$.
- (b) (10%) Find the p.d.f of $\hat{\theta}$.
- 3. Let random variables $X_1, \dots, X_n, n \ge 2$ be independent and identically distributed with density

$$f(x;\eta,\theta) = \theta^{-1} \exp\{-(x-\eta)/\theta\} I(\eta < x),$$

where $-\infty < \eta < \infty$ and $\theta > 0$ are both unknown.

- (a) (10 points) Find the maximum likelihood estimators of θ and η and denote them as $\hat{\theta}$ and $\hat{\eta}$.
- (b) (15 points) Find the distribution of $(n-1)(\hat{\eta}-\eta)/\hat{\theta}$.
- 4. Suppose random variable X has a Poisson distribution with mean μ . Assume a Gamma prior distribution Gamma (α, β) of μ , where α and β are known. Consider the loss function $l(\hat{\mu}, \mu) = (\hat{\mu} \mu)^2/\mu$.
 - (a) (10%) Find the Bayes estimator of μ .
 - (b) (15%) Find a minimax estimator μ .