臺灣大學數學系

九十一學年度第一學期碩博士班資格考試題 統計(Statistics) Sept 11, 2002 回上頁)

• (25 points) A random sample is drawn from a population that is normally distributed with mean θ and variance θ , where $\theta > 0$.

(11) (10 points) Show that the MLE of θ , $\hat{\theta}$, is a root of the quadratic equation $\theta^2 + \theta - W = 0$, where $W = n^{-1} \sum_{i=1}^n X_i^2$, and determine which root equals the

MLE.

(12) (15 points) Find the approximate variance of $\hat{\theta}$.

 (20 points) For a random sample X₁,..., X_n of Bernoulli(p) variables, it is desired to test

$$H_0: p = 0.49$$
 versus $H_1: p = 0.51$.

The test being considered is to reject H_0 if $\sum_{i=1}^n X_i$ is large.

Note that X_1 will take on the value of 0 or 1 with probability 1 - p and p, respectively.

• (20 points) Suppose that U_1, U_2, \ldots, U_m are iid uniform(0,1) random variables, and let $S_n = \sum_{i=1}^n U_i$. Define the random variable N by

$$N = \min\{k : S_k > 1\}.$$

- (31) (5 points) Show that $P(S_k \leq t) = t^k/k!$.
- (32) (10 points) Show that E(N) = e.

(33) (5 points) How large should n be so that you are 95% confident that you have the first four digits of e correct?

(20 points) X and Y are independent random variables with X ~ exponential(λ) and Y ~ exponential(μ). (The density function of X is λ⁻¹ exp(-x/λ) where x > 0.) It is impossible to obtain direct observations of X and Y. Instead, we observe the random variables Z and W, where

$$Z = \min\{X, Y\} \quad \text{and} \quad W = \begin{cases} 1 & \text{if } Z = Z \\ 0 & \text{if } Z = Y. \end{cases}$$

(41) Find the joint distribution of Z and W.

(42) Prove that Z and W are independent.

• (15 points) Find a $(1 - \alpha)$ confidence interval for θ , given X_1, \ldots, X_n iid with pdf

 $f(x|\theta) = 2x/\theta^2$, where $0 < x < \theta$ and $\theta > 0$.

[回上頁]