臺灣大學數學系

九十學年度第一學期碩博士班資格考試試題

統計與機率

[回上頁]

1

A random sample, X_1, \ldots, X_n , is drawn from a Pareto population with pdf

$$f(x|\theta,\tau) = \frac{\theta\tau^{\theta}}{x^{\theta+1}} I_{[\tau,\infty]}(x), \quad \theta > 0, \quad \tau > 0.$$

Here $I_{[\tau,\infty]}(x)$ is equal to 1 if $x \ge \tau$; 0, otherwise.

(11) Find the MLE of θ and τ . Hint: (12) may help you to solve this problem. (12) Show that the likelihood ratio test of

$$H_0: \theta = 1, \tau$$
 unknown versus $H_1: \theta \neq 1, \tau$ unknown,

has critical region of the form

 $\{(x_1, \ldots, x_n) : T((x_1, \ldots, x_n)) \le c_1 \text{ or } T((x_1, \ldots, x_n)) \ge c_2\}$, where $0 < c_1 < c_2$ and

$$T = \log\left[\left(\prod_{i=1}^{n} X_{i}\right) / \left(\min_{i} X_{i}\right)^{n}\right].$$

2

Suppose that we have two independent random samples: X_1, \ldots, X_{100} are exponential(θ), and Y_1, \ldots, Y_{200} are exponential(μ). (i.e. The probability density function

of X_1 is $\theta^{-1}\exp(-x/\theta)$.) Statistician A is asked to perform the test of

$$H_0: \theta = \mu$$
 versus $H_1: \theta \neq \mu$.

Since he only have a standard normal table, he proposes the following 0.95 level test with critical region

$$\left|T - \frac{1}{3}\right| > \frac{1}{10} \frac{\sqrt{5}}{9\theta^{1/2}} z_{0.025}.$$

Here

$$T = \frac{\sum_{i=1}^{100} X_i}{\sum_{i=1}^{100} X_i + \sum_{i=1}^{200} Y_i}.$$

Do you think that it is a reasonable proposal? If your answer is YES, give a theoretical

justification. Otherwise, propose an alternative and give a theoretical justification.

Let X_1, \ldots, X_n be independent and identically distributed random variables with one of two probability density functions. If $\theta = 0$ then

$$f(x|\theta) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases},$$

while if $\theta = 1$

$$f(x|\theta) = \begin{cases} 1/(2\sqrt{x}) & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Find the MLE of θ and show that it is consistent.

4

For two factors-starchy or sugary and green base leaf of white base leaf- the following counts for the progeny of self-fertilized heterozygotes were observed:

Type	Count
Starchy green	1997
Starchy white	906
Sugary green	904
Sugary white	32

According to genetic theory, the cell probabilities are $0.25(2+\theta)$, $0.25(1-\theta)$,

 $0.25(1-\theta)$, and 0.25θ , where θ ($0 < \theta < 1$) is a parameter related to the linkage of

the factors.

(41) Find the mle of θ and its asymptotic variance.

(42) Form an approximate 95% confidence interval for θ based on part (41).

5

Let X_1, \ldots, X_n be a random sample from a N(0, 1) population. Define

$$Y_1 = \left| \frac{1}{n} \sum_{i=1}^n X_i \right|, \quad Y_2 = \frac{1}{n} \sum_{i=1}^n |X_i|.$$

Calculate EY_1 and EY_2 .

[回上頁]

3