臺灣大學數學系

八十八學年度第二學期碩博士班資格考試試題

統計與機率

[回上頁]

機率(機率組)

1. (25/105) For any random variable X on (Ω, \mathcal{F}, P) denote the *characteristic function* of

X by $\varphi_X(t) = E[e^{itX}].$

(1.1)

Show that $\varphi_X(t)$ is uniformly continuous for $t \in \mathbb{R}$.

(1.2)

Let X be a Normal random variable with mean μ and variance σ^2 . Find $\varphi_X(t)$.

(1.3)

Apply (1.2) to evaluate $E[Y^n]$, $n \in \mathbb{N}$, where Y is a Normal random variable with mean 0 and variance σ^2 . State clearly which properties or facts you are using to solve this question.

- 2. (30/105) Let (Ω, \mathcal{F}, P) be a fixed probability space.
 - (2.1)

Let $A_n \in \mathcal{F}, n \in \mathbb{N}$. Prove Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then

 $P(A_n \ i.o.) = 0.$

(2.2)

Let (X_n) be a sequence of random variables. Apply (2.1) to prove that as

 $n \to \infty, X_n$ converges to X in probability, denoted as $X_n \xrightarrow{P} X$, if and only if

each subsequence (X_{n_k}) contains a further subsequence $(X_{n_{k(i)}})$ which

converges to X almost surely.

(2.3)

Let $(Y_n), (Z_n)$ be two sequences of random variables such that

$$Y_n \xrightarrow{P} Y, Z_n \xrightarrow{P} Z$$
. Show that $Y_n + Z_n \xrightarrow{P} Y + Z$ and $Y_n Z_n \xrightarrow{P} YZ$.

(Note that if you cannot prove (2.2), you can still apply it to establish (2.3).) 3. (20/105) Let P_N be the product of N Bernoulli measures of (η_1, \dots, η_N) on

 $\Omega_N = \{0,1\}^N$ such that

$$P(\eta_k = 1) = p, P(\eta_k = 0) = 1 - p, 1 \le k \le N, 0 Put
$$S_N = \eta_1 + \dots + \eta_N$$
(3.1)
Denote by $P_{N,m}$ the conditional distribution of P_N given

$$S_N = m, m \in \{0, 1, ..., N\}$$
 Find $P_{N,m}$.$$

Evaluate $\lim_{N\to\infty} N^{-1} \ln(P_{N,S_N}(\eta))$ by using the limiting behavior of S_N/N .

機率(統計組)

1. (15/105) (1.1) Let X be a Normal random variable with mean μ and variance σ^2 . Find its moment generating function $\varphi_X(t) = E[e^{tX}], t \in \mathbb{R}$.

(1.2) Apply (1.1) to evaluate $E[Y^n], n \in \mathbb{N}$, where Y is a Normal random variable with mean 0 and variance σ^2 .

2. (15/105) Let P_N be the product of N Bernoulli measures of (η_1, \cdots, η_N) on

 $\Omega_N = \{0,1\}^N$ such that

$$P(\eta_k = 1) = p, P(\eta_k = 0) = 1 - p, 1 \le k \le N, 0 . Put$$

- $S_N = \eta_1 + \dots + \eta_N.$
- (2.1) Denote by $P_{N,m}$ the conditional distribution of P_N given

 $S_N = m, m \in \{0, 1, ..., N\}$. Find $P_{N,m}$.

(2.2) Evaluate $E[\eta_1\eta_2 \mid S_N = m]$.

統計(機率組做 1,2 題, 統計組全做)

1. (15 points) Assume X_1, \ldots, X_n are i.i.d. according to $U(0, \theta), \theta > 0$.

(i)

(5 points) Find the maximum likelihood estimator $\hat{\delta}_n$ of $(\theta - 1)^2$.

(ii)

(10 points) It is known that the limit distribution of $n(\theta - X_{(n)})$ is exponential distributed with parameter θ (i.e., The density function $f(y) = \theta^{-1} \exp(-y/\theta)$.). Here $X_{(n)}$ is the largest order statistic. Use this result to determine the nondegenerate limit distribution of $\hat{\delta}_n - (\theta - 1)^2$ under proper normalization. 2. (15 points) Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent normal $N(\xi, \sigma^2)$ and

 $N(\eta, \tau^2)$, respectively, and consider the test of $H : \sigma^2 = \tau^2$ against $\sigma^2 < \tau^2$ with rejection region

$$\sqrt{(m+n)\rho(1-\rho)/2}[\log S_Y^2 - \log S_X^2] \ge z_\alpha,$$

where $\rho = \lim_{n \to \infty} m/(m+n)$, $0 < \rho < 1$, $S_X^2 = \sum (X_i - \bar{X})^2/(m-1)$,

$$S_Y^2 = \sum (Y_j - \bar{Y})^2 / (n-1)$$
, and $P(Z > z_{lpha}) = lpha$ where Z is a standard normal

random variable. Show that this test has asymptotic level α .

3. (10 points) The random variable Y has a binomial distribution with an unknown number θ of trials, and known probability of success, 1/2. (Namely, $Y \sim Bin(\theta, 1/2)$.) Find an

approximated 95% confidence interval of θ of the form [0, c] where c is to be

determined.

4. (15 points) Suppose that the independent pairs of random variables $(Y_1, Z_1), \ldots, (Y_n, Z_n)$ are such that Y_j and Z_j are independent in $N(\xi_j, \sigma^2)$ and

 $N(\beta \xi_j, \tau^2)$, respectively.

- (i) (8 points) Use the method of moment to derive the estimate β .
- (ii) (7 points) Is the estimate obtained in (i) consistent?
- 5. (15 points) In life-testing experiments, it is quite often that the experiment is terminated whenever the first r failures have occurred among n tested units. Suppose the survival time of a particular units follows an exponential distribution $Exp(\theta)$. (i.e.,

 $P(X > x) = \exp(-\theta x).$

- (i) Derive the maximum likelihood estimate of θ under the above setting.
- (ii) Discuss whether the resulting estimator is consistent when r = 2.

<u>[回上頁]</u>