臺灣大學數學系

八十八學年度第一學期碩博士班資格考試試題

統計與機率

<u>[回上頁]</u>

*機率

- 1. (i) Let (Ω, F, P) be a probability space and $B = \{A \in F | P(A) = 0 \text{ or } 1\}$. Prove that B is a sub- σ -field of F.
 - (ii) Let (X_n) be a sequence of independent random variables defined on (Ω, F, P) and A be a tail event of (X_n) . Show that P(A) = 0 or 1.
- 2. Let (X_n) be a sequence of random variables converges to X almost surely. Show that (X_n) converges to X in probability. The converse is true or false?
- 3. Let (X_n) be a sequence of indepent random variables. Show that $\sum_{n=1}^{\infty} X_n$ converges

almost surely if and only if $\sum_{n=1}^{\infty} X_n$ converges in probability.

- 4. Let (X_n) be a sequence of i.i.d. random variables with $E(X_n) = \mu$ and $Var(X_n) = \sigma^2, \ 0 < \sigma^2 < \infty$. Let $S_n = X_1 + X_2 + \dots + X_n$. Show that $(S_n - n\mu)/\sqrt{n\sigma}$ converges in distribution to N(0, 1). *統計
- 5. Let X_1, X_2, \dots, X_n be a random sample from p.d.f.

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} & , \quad 0 < x \le \theta, 0 < \theta < \infty \\ 0 & , \quad \text{elsewhere} \end{cases}$$

- (i) Find the maximum likelihood estimator $\hat{\theta}$ for the parameter θ .
- (ii) Show that $\hat{\theta}$ is a biased estimator.
- 6. Let X_1, X_2, \dots, X_n denote a random sample from the distribution that has p.d.f.

$$f(x;\theta) = \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-\theta)^2}{2}}, \ -\infty < x < \infty$$

Find the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ assume

 $\theta_0 > \theta_1$

- 7. Let X₁, X₂, ..., X_n be independent and identically distributed random variables with distribution P_θ where θ is a real valued parameter. Suppose that E_θX = g(θ) and Var_θ(X) = τ²(θ) < ∞ where g is continuously differentiable function with derivative g⁽¹⁾(θ) > 0 for all θ. Show that the estimator θ̂ obtained by solving the equation g(θ) = X̄ where X̄ = ∑_{i=1}ⁿ X_i/n is consistent. Also derive its asymptotic distribution.
 8 Let X₁, X₂, ..., X_n be a sample from a distribution function *F*(·) with density *f*(·)
- 8. Let X_1, X_2, \dots, X_n be a sample from a distribution function $F(\cdot)$ with density $f(\cdot)$. Since

$$f(y) = \lim_{h \to 0} \frac{F(y+h) - F(y-h)}{2h}$$

one suggest the estimator

$$\hat{f}(y) = \lim_{h_n \to 0} \frac{\hat{F}_n(y+h_n) - \hat{F}_n(y-h_n)}{2h_n},$$

where

$$\hat{F}_n(t) = \frac{\text{Number of } X_i \le t}{n}$$

Find the condition on h_n to guarantee that $\hat{f}(y)$ is a consistent estimate of f(y).

[回上頁]