臺灣大學數學系

八十七學年度第一學期碩博士班資格考試試題

統計與機率

[回上頁]

probability

- In (Ω, F, P), let A_n ∈ F. The set {A_n i.o.} is defined as {w; w ∈ A_n for an infinite number of n}. Show the following statements hold.
 - 1. $\sum_{1}^{\infty} P(A_n) < \infty$ implies $P(A_n \ i.o.) = 0$.
 - 2. If A_n are independent events, then $\sum_{1}^{\infty} P(A_n) = \infty$ implies $P(A_n \ i.o) = 1$.
- 2. For any random variable X and real number r > 0,
 - 1. Show that $E|X|^r = r \int_0^\infty t^{r-1} P(|X| \ge t) dt$.
 - If E|X|^r < ∞, then P(|X| ≥ t) = o(t^{-r}) as t → ∞. (You can assume that
 (a) holds to solve this problem.)
 - 3. Comment on the connection of statement (b) with r = 2 and the Chebyschev inequality.
- 3. Let the distribution functions F, F_1, F_2, \cdots possess respective characteristic functions
 - $\phi, \phi_1, \phi_2, \cdots$ Show that the following three statements are equivalent:
 - 1. F_n converges in distribution to F;
 - 2. $\lim_{n \to \infty} \phi_n(t) = \phi(t)$, each real t;
 - 3. $\lim_{n \to \infty} \int g dF_n = \int g dF$, each bounded continuous function g.
- 4. Consider a two-state Markov chain. The variables X_1, X_2, \cdots each take on the values 0 and 1, with the joint distribution determined by $P(X_1 = 1) = p_1$ and

 $P(X_{i+1} = 1 \mid X_i = 0) = \pi_0$ and $P(X_{i+1} = 1 \mid X_i = 1) = \pi_1$ of which we assume $0 < \pi_0, \pi_1 < 1$. Set $\bar{X}_n = \sum_{i=1}^n (X_i/n)$. Show that \bar{X}_n is a consistent estimate of $p = \pi_0/(\pi_0 + \pi_1)$.

Statistics

1. Find the asymptotic distribution of \hat{p}_n^2 where \hat{p}_n is the proportion of success of a

binomial distribution with n trials and the probability of success p.

2. In life-testing experiments, it is quite often that the experiment is terminated whenever the first r failures have occurred among n tested units. This scheme is usually referred to as Type II censored sampling. Suppose the survival time of a particular unit follows an exponential distribution $Exp(\theta)$ (i.e., $F(x) = 1 - \exp(-\theta_x)$). Derive the maximum

likehood estimate of θ under Type II censored sampling and discuss whether the resulting estimator is consistent when r = 1.

