臺灣大學數學系

八十六學年度第二學期碩博士班資格考試試題

統計與機率

[回上頁]

1. (15 points) Let Y be a number uniformly distributed over the unit interval (0, 1). Let

 X_1, X_2, \cdots be the successive digits in the decimal expansion of Y, that is,

$$Y = \frac{X_1}{10} + \frac{X_2}{10^2} + \dots + \frac{X_n}{10^n} + \dots$$

- 1. (7 points) Prove that X_1, X_2, \cdots are independent discrete valued random variables uniformly distributed over the integers **0** to **9**.
- 2. (8 points) Assume (a) holds. Show that for any integer $k (0 \le k \le 9)$, the set of numbers Y for which the relative frequency of k in the decimal expansion of Y is 1/10 has probability 1. Does this contradict the fact that only three occur in the

decimal expansion of 1/3 ?

2. (10 points) Give a proof to show that if $E(X_n) \to 0$ and $Var(X_n) \to 0$, then

 $X_n \xrightarrow{P} 0$.

3. (10 points) Let X_1, X_2 be independent, identically distributed random variables with common uniform distribution on (0, 1). Let $X_{(2)} = \max(X_1, X_2)$. Find

 $P(X_1 \le x \mid X_{(2)} = y) \text{ and } E(X_1 \mid X_{(2)} = y).$

- (15 points) Let X₁, X₂, ··· be a sample from a N(μ, 1) population. Find the UMVU estimate of P(X₁ ≥ 0) = Φ(μ). Here Φ denotes the distribution function of a standard normal random variable.
- 5. (30 points) Let X_1, \dots, X_n be independent random variables, $X_i \sim Poisson(\lambda_i)$, $i = 1, \dots, n$.
 - 1. (10 points) Deduce that the likelihood-ratio statistic for $H_0: \lambda_1 = \cdots = \lambda_n$ versus $H_a: \lambda_i \neq \lambda_j$ for some i, j, is given by

$$2\log\Lambda = 2\sum_{i=1}^{n} X_i \log(\frac{X_i}{\bar{X}}),$$

where $\bar{X} = \sum_{i=1}^{n} X_i/n$.

2. (10 points) Explain why $-2\log\Lambda$ can be approximated by

$$\frac{1}{\bar{X}} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

3. (10 points) If H_0 is true and $\lambda_1, \dots, \lambda_n \to \infty$, it is claimed that $2 \log \Lambda$ has approximately the chi-square distribution with n-1 degrees of freedom. Please show that the above claim is correct. (You can assume (b) holds to proceed your proof.)

6. (20 points) Given the general linear model

 $E(Y \mid \mathcal{X}, \mathcal{Z}) = \mathcal{X}\beta + \mathcal{Z}\gamma; \qquad Var(Y) = \mathcal{I}\sigma^2$

where *Y* is $n \times 1$, \mathcal{X} is $n \times p, \beta$ is $p \times 1$, \mathcal{Z} is $n \times p, \gamma$ is $q \times 1$. Suppose that we believe that *Y* is not related to \mathcal{Z} . (In fact, *Y* is related to \mathcal{Z} via the above model with $\gamma \neq 0$.) We fit the model

$$E(Y \mid \mathcal{X}) = \mathcal{X}\beta; \qquad Var(Y) = \mathcal{I}\sigma^2.$$

- 1. (10 points) What is the effect of the false model assumption on the estimation of β ?
- 2. (10 points) Suppose that p=2,q=1, the ith element of ${\mathcal Z}$ is x^2_{ni} , and the ith

row of \mathcal{X} is $(1, x_{ni})$. Re-do (a) as $n \to \infty$ under the assumptions that the

unobserved noises are normally distributed with mean 0 and variance σ^2 , and that $x_{ni} = i/n$.

[回上頁]