臺灣大學數學系

八十六學年度第一學期碩博士班資格考試試題

統計與機率

[回上頁]

(10 points) Show that if X₁,..., X_{2n}; Y₁,..., Y_n are independent and identically distributed random variables with EX₁ = EY₁ = λ = Var(X₁) = Var(X₂). Find the limiting distribution of the sequence of random variables

$$F_n = \sqrt{n} \frac{\sum_{i=1}^{2n} (X_i - \lambda)}{\sum_{j=1}^{n} Y_j}.$$

2. (10 points) Let $\{X_n\}$ be a sequence of random variables satisfying

$$X_1 > X_2 > \cdots > 0$$
 almost surely.

Then show that X_n converges to **0** in probability implies that X_n converges to **0** almost surely.

3. (10 points) Consider an urn which contains $b \ge 1$ black and $w \ge 1$ white balls which are well mixed. Repeated drawings are made from the urn, and after each drawing the ball drawn is replaced, along with c balls of the same color. Here $c \ge 1$ is an integer.

Let $X_0 = b/(b+w)$, and X_n be the proportion of black balls in the urn after the *n*th

draw. Find the probability that the nth ball drawn is black.

- 4. (20 points) Let X_1, \ldots, X_n be a sample from uniform (θ_1, θ_2) where θ_1, θ_2 are unknown.
 - Show that T(X) = (min(X₁,...,X_n), max(X₁,...,X_n)) is sufficient. (10 points)
 - 2. Assuming that $T(\mathbf{X})$ is complete find a U.M.V.U. estimate of $(\theta_1 + \theta_2)/2$. (10 points)
- 5. (15 points) Suppose (X_1, \ldots, X_n) is a sample from a population with density

$$f(x,\theta) = \frac{9}{10\sigma}\phi\left(\frac{x-\mu}{\sigma}\right) + \frac{1}{10}\phi\left(x-\mu\right)$$

where ϕ is the standard normal density and

 $\theta = (\mu, \sigma^2) \in \Theta = \{(\mu, \sigma^2) : -\infty < \mu < \infty, \sigma^2 > 0\}.$

1. Show that maximum likelihood estimates do not exist, but that $\sup_{\sigma} p(\mathbf{x}, \hat{\mu}, \sigma^2) =$

 $\sup_{\mu,\sigma} p(\mathbf{x}, \hat{\mu}, \sigma^2)$ if, and only if, $\hat{\mu}$ equals one of the numbers x_1, \ldots, x_n . Here $\mathbf{x} = (x_1, \ldots, x_n)$. (10 points)

- 2. Give a brief explanation why (a) holds. (5 points) Hint: continuous pdf versus discrete pdf
- 6. (15 points) The normally distributed random variables X_1, \ldots, X_n are said to be *serially correlated* if we can write

$$X_i = \theta X_{i-1} + \epsilon_i, \quad i = 1, \dots, n,$$

where $X_0 = 0$ and $\epsilon_1, \ldots, \epsilon_n$ are independent $N(0, \sigma^2)$ random variables. Derive the likelihood ratio test of $H: \theta = 0$ (independence) versus $K: \theta \neq 0$ (serial correlation).

7. (20 points) Assume that Y_i = βX_i + ε_i for 1 ≤ i ≤ n, where X₁,..., X_n are independent N(μ, τ²) random variables (μ ≠ 0), and ε₁,..., ε_n are iid N(0, σ²), and the X s and εs are independent. Statistician A proposes to estimate β by ∑ⁿ_{i=1} Y_i/∑ⁿ_{i=1} X_i, denoted it by β̂_{n1}, since Y_i is normally distributed with mean βμ. Statistician B proposes to estimate β by ∑ⁿ_{i=1} X_iY_i/∑ⁿ_{i=1} X²_i, denoted it by β̂_{n2}, since (X_i, Y_i) follows a linear regression model if X s are viewed as constants. For

these two estimates $\hat{\beta}_{n1}$ and $\hat{\beta}_{n2}$, which one will you use? Please give reasons to support your conclusion.

[回上頁]