台灣大學數學系 九十一學年度第二學期博士班資格考試題 偏微分方程

May 10, 2003

[回上頁]

Choose 4 problems from below.

1. Solve the equations:

(a)
$$u_x + yu_y - u_z = -u, u(x, y, 0) = x + y.$$

(b)
$$u_x u_y = u, u(x, 0) = x^2$$
.

2. Let $u \in C^2(R \times [0, \infty))$ solve

$$u_{tt} - u_{xx} = 0, u(x, 0) = f(x), u_t(x, 0) = g(x).$$

Suppose f,g have compact support. Show that

- (a) $\int_{-\infty}^{\infty} \{u_t^2 + u_x^2\} dx$ is a constant in t,
- (b) $\int_{-\infty}^{\infty} \{u_t^2 u_x^2\} dx = 0 \text{ for large } t.$
- 3. Let u solve $u_t + 6uu_x + u_{xxx} = 0$ for $x \in R, t > 0$. Suppose u has the form u(x,t) = v(x-ct) for some constant c with $v(s),v'(s),v''(s) \to 0$ as $s \to \infty$ or $s \to -\infty$. Find an explicit formula for u.
- 4. Let u be a C^2 solution of $\triangle u=0$ in Ω and $\{x:|x-x_o|\leq \rho\}\subset \Omega$. Show that
- (a) $u(x_o)=\frac{1}{\omega_n\rho^{n-1}}\int_{|x-x_o|=\rho}u(x)\,dS_x$, where $\omega_n\rho^{n-1}$ is the surface area of the sphere $|x-x_o|=\rho$.
- (b) $|Du(x_o)|^2 \le \frac{1}{\omega_n \rho^{n-1}} \int_{|x-x_o|=\rho} |Du(x)|^2 dS_x$.
- 5. Suppose f(x) is bounded and continuous in \mathbb{R}^n which satisfies $\int_{\mathbb{R}^n} |f(x)| \, dx < \infty$. Let u be a bounded solution of

$$u_t = \triangle u$$
 for $x \in \mathbb{R}^n, t > 0; u(x, 0) = f(x)$.

Show that $\lim_{t\to\infty} u(x,t) = 0$.

6. Let u be a C^1 solution of $u_t + uu_x = 0$ in each of two regions separated by a smooth curve $x = \xi(t)$. Suppose u is continuous, but u_x has a jump discontinuity on the curve. Prove that

$$\frac{d\xi}{dt} = u(\xi(t), t).$$

[回上頁]