臺灣大學數學系

九十學年度第一學期碩博士班資格考試試題

微分方程式

[回上頁]

1

(20 points) Solve the following problems using characteristic methods:

(a)
$$uu_{x_1} + u_{x_2} = 1$$
, $u(x_1, x_1) = \frac{x_1}{2}$
(b) $x_1u_{x_1} + 2x_2u_{x_2} = u$, $u(x_1, x_1) = g(x_1)$
where $g \in C^2(R)$.

2

(a) (10 points) Show that the function $u(x,t) = \frac{1}{\sqrt{t}}f\frac{1}{\sqrt{t}}$

is a solution of the heat equation $u_t = u_{xx}$ in $R imes (0,\infty)$ if and only if f satisfies the

following ordinary differential equation $f''(\xi) + \xi f'(\xi) + f(\xi) = 0 \quad \forall \xi \in R \quad (*)$

(b) (10 points) Find all solution of the above ordinary differential equation (*). Hence or otherwise find a self-similar solution of the heat equation in $\mathbb{R}^n \times (0, \infty)$.

3

(20 points) Let $u \in C^2$ for |x| < a; $u \in C^0$ for $|x| \le a$; $u \ge 0$, $\triangle u = 0$ for |x| < a. . Show that for $|\xi| < a$,

$$\frac{a^{n-2}(a-|\xi|)}{(a+|\xi|)^{n-1}}u(0) \le u(\xi) \le \frac{a^{n-2}(a+|\xi|)}{(a-|\xi|)^{n-1}}u(0)$$

4

(20 points) Let $\Omega \supset \mathbb{R}^n$ be a bounded domain and let G(x, y) be the Green function for the Laplacian in Ω . That is $\Delta_y G(x, y) = -\delta_x$ in Ω and G(x, y) = 0 for any $x \in \Omega$, , $y \in \partial \Omega$ where δ_x is the delta mass at x. Prove that (a) $G(x, y) \ge 0 \ \forall x, \ y \in \Omega, \ x \ne y$ (b) $G(x, y) = G(y, x) \ \forall x, \ y \in \Omega, \ x \ne y$.

5

$$u(x,t) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-|x-y^2/4t|} f(y) dy$$

satisfies the heat equation in $\,R^n imes(0,\infty)$ and

 $\lim_{t \searrow 0} u(x,t) = f(x) \qquad \forall x \in \mathbb{R}^n.$

[回上頁]