臺灣大學數學系

八十六學年度第二學期碩博士班資格考試試題

微分方程式

25 points each．
1．Solve the following PDEs．
1．$e^{x} u_{y}-u u_{x}=0, u(x, 0)=-e^{x}$
2.

$$
\begin{aligned}
& u_{t t}-u_{x x}=x^{2} \text { in } \mathbb{R} \times[0, \infty) \\
& u(x, 0)=u_{t}(x, 0)=0
\end{aligned}
$$

2.

1．Show that for $n=3$ the general solution of $u_{t t}-c^{2} \triangle u=0$ with spherical symmetry about the orgin has the form

$$
u=\frac{F(r+c t)+G(r-c t)}{r}, \quad r=|x|
$$

with suitable F, G ．
2．Show that the solution with initial data of the form

$$
u=0, u_{t}=g(r)(g=\text { even function of } r)
$$

is given by

$$
u=\frac{1}{2 c r} \int_{r-c t}^{r+c t} \rho g(\rho) d \rho
$$

3．Let Ω be a bounded smooth domain in \mathbb{R}^{n} ．Assume $u \in C^{2}(\bar{\Omega})$ is a solution of

$$
\triangle u=0 \text { in } \Omega, u=f \text { on } \partial \Omega
$$

1．Show that

$$
\int_{\Omega}|\nabla u|^{2} d x \leq \int_{\Omega}|\nabla v|^{2} d x
$$

for any $v \in C^{1}(\bar{\Omega})$ with boundary values f ．
2．Let $B_{\xi, \rho}=\{x:|x-\xi|<\rho\} \subset \Omega$ ．Show that

$$
u(\xi)=\frac{1}{\omega_{n} \rho^{n-1}} \int_{\partial B_{\xi, \rho}} u(x) d s_{x}
$$

where $\omega_{n} \rho^{n-1}$ is the surface area of $\partial B_{\xi, \rho}$ and $d s_{x}$ is the surface element on $\partial B_{\xi, \rho}$.
4. Let $K(x, y, t)=(4 \pi t)^{-\frac{n}{2}} e^{-\frac{|x-y|^{2}}{4 t}}, f$ be a continuous bounded function on \mathbb{R}^{n} and $u(x, t)=\int_{\mathbb{R}^{n}} K(x, y, t) f(y) d y$.

1. Show that

$$
K(x, 0, s+t)=\int_{\mathbb{R}^{n}} K(x, y, t) K(y, 0, s) d y
$$

for $s>0, t>0$.
2. Show that u satisfies $u_{t}=\triangle u$ for $t>0$ and $\lim _{(z, s) \rightarrow\left(x, 0^{+}\right)} u(z, s)=f(x)$.

