臺灣大學數學系

九十學年度第二學期碩博士班資格考試試題

幾何

<u>[回上頁]</u>

1.

2.

(25/100) Two spaces A and B are said to have the same homotopy type if there are continuous maps $f : A \to B$ and $g : B \to A$ such that both f(g) and g(f) are homotopic to the identity maps. Let $A \subset \mathbb{R}^2$, $A = \{(x+2)^2 + y^2 = 1\} \cup \{(-1 \le x \le 1, y = 0)\} \cup \{(x-2)^2 + y^2 = 1\}$, $B = \text{Lemniscate} = \{r^2 = \cos 2\theta\}$. Do A and B have the same homotopy type? (25/100) $Z = \arctan(y \div x) \ x > 0$, y > 0, $0 < z < \frac{\pi}{2}$. Double integral $\int_0^\infty \int_0^\infty K(x,y) \ \sqrt{1 + (\partial z/\partial x)^2 + (\partial z/\partial y)^2}} \ dxdy$ is an improper integral, where K(x,y) is the Gauss curvature of the graph and $dS = \sqrt{1 + (\partial z/\partial x)^2 + (\partial z/\partial y)^2} \ dxdy$ is the surface element of surface integral. Is $\int \int K \ dS$ convergent or divergent? If convergent $\int \int K \ dS =$?

3.

(25/100) $Z = \{\frac{x^2}{4} + y^2 = 1\} \subset \mathbb{R}^3$ is a cylinder, $C = Z \cap \{x + y - z = 2\}$ is a curve on Z. Is C a geodesic on Z? At the point (x, y, z) = (2, 0, 0), geodesic curvature $K_g = ?$

4.

(25/100) First fundamental form $I = Edu^2 + 2Fdudv + Gdv^2 = \frac{1}{(1-u^2-v^2)^2}du^2$ + $0 + \frac{1}{(1-u^2-v^2)^2}dv^2$, $(1-u^2-v^2>0)$. Can you find a surface in \mathbb{R}^3 x = x(u, v), y = y(u, v), z = z(u, v) having this first fundamental form? If yes, second fundamental form II = $Ldu^2 + 2Mdudv + Ndv^2$ =? Mean curvature = H =? Gauss curvature = K =?