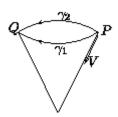

臺灣大學數學系

八十九學年度第二學期碩博士班資格考試試題

幾何

[回上頁]

1.


Let P be the pole of polar coordinate. $r = 1 - \sin \theta$ is a cardioid.

Q=(x,y)=(0,-2) . Arclength $\stackrel{\frown}{PQ}=L=$? A string of length L has its one end

fixed at ${\it P}$ and winds around the cardioid so that its other end generates the involute of the cardioid. Is this involute a cardioid, too? (25/100)

- Can you find a surface in \mathbb{R}^3 passing through the origin (x,y,z)=(0,0,0) so that both its mean curvature H and Gauss curvature K vanish at the origin yet the surface is not a plane? If not, explain why not. (25/100)
- 3. Can you find a closed differential 2-form ω in $\mathbb{R}^3-(0,0,0)$ which is not exact? If yes, $\omega=?dx\wedge dy+?dy\wedge dz+?dz\wedge dx \ (25/100)$

4.

Cone =
$$\{x^2 + y^2 = z^2\}$$
, $P = (1, 0, 1), Q = (-1, 0, 1)$
 $\gamma_1 = \text{cone} \cap \{z = 1\} \cap \{y \ge 0\}$

 $\gamma_2={
m cone}\cap\{z=1\}\cap\{y\leq 0\}$ $\vec V=(-1,0,-1) \mbox{ is a tangent vector to the cone at } P.$

Parallel translate \vec{V} from P to Q along $\gamma_1=(?,?,?)$. If we translate along γ_2 instead of γ_1 , do we get the same vector? (25/100)

[回上頁]