臺灣大學數學系

八十八學年度第二學期碩博士班資格考試試題

幾何

[回上頁]

- 1. Let X, Y be two topological spaces, and f_0, f_1 are two continuous maps from X to Y
 - 1. (5pts) What does that f_0 is homotopic to f_1 mean ?
 - 2. (5pts) How to define the first fundamental group of X, $\Pi_1(X, x_0), x_0 \in X$?
 - 3. (5pts) When will we call that X, Y are of the same homotopy type?
 - 4. (5pts) If X and Y are both arcwise connected, and of the same homotopy type, what is the relation between $\Pi_1(X)$ and $\Pi_1(Y)$? Give the reason briefly.
 - 5. (10pts) $\Pi_1(\mathbb{R}^2 \{P_1, P_2\}) =?$

2. $X(u,v) = (u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, v^2 - v^2)$, $(u,v) \in \mathbb{R}$. Denote the image of

X(u,v) by S.

- 1. (10pts) Find the first fundamental form of S.
- 2. (10pts) Find the second fundamental form of S.
- 3. (10pts) Compute the Gaussian curvature and mean curvature of S.
- 4. (10pts) Compute the Christoffel symbols for the first fundamental form.
- 5. (5pts) Write down the geodesic equations on ${\it S}$ with explicit coefficients.
- 6. (5pts) Let $p \in S$, T_p the tangent plane of S at p, T_p^{ε} a plane parallel to T_p with

distance ε . Sketch roughly the picture of $S \cap T_p^{\varepsilon}$ near p up to the first order.

7. (10pts) Let D be the unit Disk on \mathbb{R}^2 . Use Gauss-Bonnet Theorem to find the total geodesic curvature $\int_{\gamma} k_g ds$ on S, where $\gamma(\theta) = X(\cos \theta, \sin \theta)$ considered as

the boundary of X(D).

3. (10pts) State the Gauss-Bonnet Theorem (both local and global) with a clear definition for all the symbols in the formula.

[回上頁]