台灣大學數學系

九十二學年度第二學期博士班資格考試題

離散數學

May 9, 2004

[回上頁]

1.

(20%) (a) Suppose that (A_1, A_2, \ldots, A_n) is a family of sets such that $|A(J)| \ge |J|$ for all $J \subseteq \{1, 2, \ldots, n\}$, where $A(J) = \bigcup_{j \in J} A_j$. Prove that if $|A_i| \ge r$ for $1 \le i \le n$, then the number of SDRs for this family is at least r! if $r \le n$, and is at least

r(r-1)...(r-n+1) if r > n.

(b)

Given a $k \times n$ Latin rectangle with k < n, prove that there are at least (n - k)! ways to add a row to form a $(k + 1) \times n$ rectangle.

2.

(20%) (a) Suppose (A_{ij}) is an $n \times n$ real matrix whose entries satisfy $|a_{ij}| \leq 1$ for all i, j. Prove that $|\det(A)| \leq n^{n/2}$; and the equality holds if and only if $a_{ij} = \pm 1$ for all i, j and $AA^{T} = nI$. (Such a matrix is called an *Hadamard matrix*.) (b)

Prove that if a Hadamard matrix of order n exists, then either n = 1 or n = 2, or $n \equiv 0 \pmod{4}$.

3.

(20 %) Let A and B be two $m \times n$ matrices with entries in $\{0, 1\}$. An exchange

operation substitutes a submatrix of the form $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ for a submatrix of the form

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or vice versa. Prove that if A and B have the same list of row sums and have the

same list of column sums, then A can be transformed into B by a sequence of exchange operations. Interpret this conclusion in the context of bipartite graphs.

4.

(20%) Let G be a connected graph of n vertices. Define a new graph G' having one vertex for each spanning tree of G, with vertices adjacent in G' if and only if the corresponding

trees have exactly n-2 common edges. Prove that G' is connected. Determine the

diameter of G'.

5.

(20 %) The k th power of a simple graph G is the simple graph G^k with vertex set V(G)

and edge set $\{uv: 1 \leq d_G(u,v) \leq k\}$. (a) Suppose that G-x has at least three

nontrivial components in each of which x has exactly one neighbor. Prove that G^2 is not Hamiltonian. (b) Prove that the cube of each connected graph (with at least three vertices) is Hamiltonian. (HINT: Reduce this to the special case of trees, and prove a stronger result that if xy is an edge of the tree T, then T^3 has a Hamiltonian cycle using the edge xy.)

[回上頁]