台灣大學數學系 九十一學年度第二學期博士班資格考試題 離散數學

May 10, 2003

[回上頁]

1. (17%) Suppose A is an *n*-set and $f_m = |\mathcal{F}_m|$ for $0 \le m \le 2$, where $\mathcal{F}_m = \{B : B \subseteq A \text{ and } |B| \equiv m \pmod{3}\}$. Determine f_0, f_1 and f_2 .

2. (17%) Recall that Ramsey's theorem is as follows. Suppose a_1, a_2, \ldots, a_r, t are positive integers such that each $a_i \ge t$. There exists a positive integer n with the following property: If all the t-subsets of an n-set are colored with r colors, then there is an i and an a_i -subset all of whose t-subsets are colored by the ith color. We denote by $R(a_1, a_2, \ldots, a_r; t)$ the smallest n for which Ramsey's theorem holds. (2-1) Prove that for any five points in the plane, no three colinear, some four of the points form a convex quadrilateral. (2-2) Prove that for a set of n points in the plane, if every four points form a convex quadrilateral, then all n points form a convex polygon. (2-3) Prove that for any R(n, 5; 4)

points in the plane, no three colinear, some set of n of the points form a convex polygon.

3. (16%) Let d_1, d_2, \ldots, d_n be positive integers, with $n \ge 2$. Prove that there exists a tree with vertex degrees d_1, d_2, \ldots, d_n if and only if $\sum_{i=1}^n d_i = 2n - 2$.

4. (17 %) A *doubly stochastic matrix* is a nonnegative real matrix in which every row and every column sums to 1. Prove that a doubly stochastic matrix Q can be expressed

 $Q = c_1 P_1 + c_2 P_2 + \ldots + c_m P_m$, where c_1, c_2, \ldots, c_m are nonnegative real numbers summing to 1 and P_1, P_2, \ldots, P_m are permutation matrices. For example,

$$\begin{pmatrix} 1/2 & 1/3 & 1/6 \\ 0 & 1/6 & 5/6 \\ 1/2 & 1/2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} .$$

5. (17%) Let G be a graph having no induced subgraph isomorphic to P_4 . Prove that its chromatic

number $\chi(G)$ is equal to its clique number $\omega(G)$. 6. (16%) The k th power of the n-path is the graph P_n^k whose vertex set is $V(P_n^k) = \{1, 2, ..., n\}$ and edge set is $E(P_n^k) = \{ij : 1 \le i < j \le n$ and $|i-j| \le k\}$. Determine all pairs (n, k) for which P_n^k is planar. Give reasons.

[回上頁]