- # 1. (1) Let $\{A_k\}$ be a sequence of nested closed sets in \mathbb{R} such that each A_k is nonempty and $A_{k+1} \subset A_k, \forall k$. Can $\bigcap_{k=1}^{\infty} A_k$ be nonempty? If yes, prove it. Otherwise, give a counterexample. (10 pt).
 - (2) Prove that the open interval (0,1) can be represented as a disjoint union of closed intervals. (10 pt)
- # 2. Let $f:[0,1] \to \mathbb{R}$ be an increasing function. Answer and prove or disprove the following questions:
 - (1) Can f be differentiable almost everywhere on [0, 1]? (10 pt)
 - (2) Let f' be the first derivative of f. Suppose f' is Lebesgue integrable on [0,1]. Can $\int_0^1 f' dx = f(1) f(0)$? (10 pt)
 - (3) Can f be Lebesgue integrable? (10 pt)
- # 3. (1) What's the convergence in measure? (5 pt)
 - (2) Can the convergence almost everywhere imply the convergence in measure? (5 pt)
 - (3) If the answer of (ii) is yes, prove it. Otherwise, give a counterexample and write the correct statement. (10 pt)
- # 4. Answer and prove or disprove the following questions:
 - (1) Can the convergence in $L^p([0,1])$ for some $1 imply the convergence in <math>L^1([0,1])$? (10 pt)
 - (2) Can the convergence in $L^p([0,1]), \forall 1 imply the convergence in <math>L^{\infty}([0,1])$? (10 pt)
- # 5. Can the weak convergence in $L^2([0,1])$ imply the (strong) convergence in $L^2([0,1])$? If the answer is yes, prove it. Otherwise, give an extra condition such that the weak convergence may imply the (strong) convergence in $L^2([0,1])$. Of course, you have to prove all your answers. (10 pt)