台灣大學數學系

九十二學年度第二學期博士班資格考試題 實分析 May 9, 2004

[回上頁]

There are Problems A to D with a total of 110 points.**Please write down your proof or computatioinal steps clearly on the answer sheets**.

A.

Let (X, \mathcal{M}, μ) be a measure space where \mathcal{M} is a σ -algebra of subsets of X, and $\mu : \mathcal{M} \to [0, \infty]$ is a measure. Define

$$\mu^*(E) = \inf \{ \mu(A) | A \in \mathcal{M} \ , \text{ and } E \subset A \}$$
, for any subset $E \subset X$

(a)

(10 points) Prove that μ^* is an outer measure define in X such that every $E \in \mathcal{M}$ is μ^* -measurable, and $\mu^*(E) = \mu(E)$. Are sets in \mathcal{M} the only μ^* -measurable subset of X?

(b)

(15 points) Let $E_n \subset X(n = 1, 2, 3, \cdots)$ be a sequence of subsets. Probe that $\mu^*(\liminf_{n \to \infty} E_n) \leq \liminf_{n \to \infty} \mu^*(E_n)$. Give example to show that the equality is in general false. Is $\mu^*(\limsup_{n \to \infty} E_n) \geq \limsup_{n \to \infty} \mu^*(E_n)$ also true?

B.

(15 points)Let $f \in L^1(\mathbb{R}^n)$ and $K \subset \mathbb{R}^n$ be a compact subset of \mathbb{R}^n . Define the functions

$$\phi(x) = \int_{\mathbb{R}}^{n} |f(x+y) + f(y)| dy, \psi(x) = \int_{k+x} f(y) dy \quad \text{for } x \in \mathbb{R}^{n}$$

where $K + x = \{y + x | y \in K\}$. Prove that ϕ and ψ are both continuous functions in \mathbb{R}^n . Are both uniformly continuous in \mathbb{R}^n ?

C.

Let (X, \mathcal{M}, μ) be a measure space (as in Problem A). Let $f_n(n = 1, 2, 3, \cdots)$ and f be in $L^p(X, \mathcal{M}, \mu)$ with $1 \le p < \infty$. (a) (15 points) If $\lim_{n\to\infty}||f_n||_{L^p}=||f||_{L^p}$, prove that $f_n\to f$ in measure iff $\lim_{n\to\infty}||f_n-f||_{L^p}=0$

(b)

(15 points) If $||f_n||_{L^p}$ is bounded in L^p and $f_n \to f$ in measure where 1 , prove that

$$\lim_{n \to \infty} \int_X f_n(x)g(x)d\mu(x) = \int_X f(x)g(x)d\mu(x) \quad \text{for any } g \in L^q(X, \mathcal{M}, \mu)$$

where q is given by $\frac{1}{p} + \frac{1}{q} = 1$. Show that by an example that the conclusion is false in case p = 1.

D.

Determine which of the following statements is true or false. Prove your answer. Each has 10 points. (a)

Let $f : [a, b] \to \mathbb{R}$ be a function of bounded variation. Then f is absolutely

continuous in [a,b] iff f is absolutely continuous in [a+arepsilon,b] for all sufficiently small

 $\varepsilon > 0.$

(b)

Let $E \subset \mathbb{R}^2$ be a Borel subset, then the set $F = \{ \sin(x^2 + y^2) | (x,y) \in E \}$ is also

Borel in $\mathbb R$. However, if E is Lebesgue measurable, the F may not be Lebesgue measurable. (c)

There exists a collection \mathcal{F} of closed rectangles in \mathbb{R}^n such that $\bigcup_{E \in \mathcal{F}} E$ is not Lebesgue measurable.

(d)

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be Borel measurable. Then, for each $y \in \mathbb{R}$ fixed, the function f(x, y) is also Borel measurable in $x \in \mathbb{R}$.

[回上頁]