台灣大學數學系 九十一學年度第二學期博士班資格考試題 實分析

May 10, 2003

<u>[回上頁]</u>

There are 12 problems, do any 10 of them.

Let (X, \mathbf{B}, μ) be a σ -finite measure space (i.e. there exist countably many $X_j \in \mathbf{B}$ such that $\mu X_j < \infty$ and $X = \bigcup_j X_j$).Let $f \in L^1(\mu)$

(1)Prove for any $\epsilon > 0$, there is a measurable function g vanishing outside a set of finite measure such that $\int |f - g| d\mu < \epsilon$.

(2)Prove for any $\epsilon > 0, \exists \delta > 0$ such that $\int_A |f| d\mu < \epsilon$ for any $A \in \mathbf{B}$ with $\mu A < \delta$.

(3)Define a signed measure ν by $\nu \to E = \int_E f d\mu$. Let $\{E_n\}$ be a decreasing sequence of measurable sets. Prove $\nu(\bigcap_1^\infty E_j) = \lim_{j\to\infty} \nu E_j$.

(4) If X = [0, 1] and μ is the Lebesgue measure, prove F(x) defined by $F(x) = \int_0^x f(t) dt$ is absolutly continuous.

Let f be a real-valued measurable function on [a,b] and $E = \{x : |f'(x)| < \alpha\}$.Let

 m^* and m be respectively the Lebesgue outer measure and Lebesgue measure on [a,b]. (5) If f is absolutely continuous, prove $m^*(f(E)) \leq \alpha m^*(E)$.

(6) If f is of bounded variation, is it still true that $m^*(f(E)) \leq \alpha m^*(E)$?Prove or disprove your answer.

Let X be a compact subset of \mathbb{R}^n . Let $f_n \in L^p(X)(p > 1)$ be a sequence converging a.e. to a measurable function f. Suppose $||f_n - f||_p < M$ for some M.

(7) Prove $f \in L^p(X)$ and f_n converges to f weakly.

(8) Prove f_n converges to f in $L^r(X)$ for any $1 \le r \le p$.

Let μ be a measure on the compact subset K of C. Define $f(z) = \int_K \frac{d\mu(\zeta)}{\zeta - z}$.

(9) Prove f is analytic outside K.

(10) Find an estimate for |f'(z)| for z not in K.

Let ϕ be a bounded measurable function defined on $\{(x,y): |x|^2+|y|^2\leq 1\}\subset {f R}^2$. Define for $(x,y)\in {f R}^2$

$$g(x,y) = \int_{|s|^2 + |t|^2 \le 1} \phi(s,t) \log((s-x)^2 + (t-y)^2) dm,$$

where m is the Lebesgue measure on \mathbb{R}^2 . (11) Prove g is locally integrable hence finite a.e..

(12) Prove the partial derivatives of g exist .

[回上頁]