# 臺灣大學數學系

# 九十學年度第一學期碩博士班資格考試試題

## 分析

#### [回上頁]

1.

[a] Show that the function h defined by  $h(x) = c^{-\frac{1}{x^2}}$ , x > 0; h(x) = 0,  $x \le 0$  is in

 $C^{\infty}$ .

[b] Show that the function g(x) = h(x - a)h(b - x), a < b is  $C^{\infty}$  and with support in [a, b].

[c] Construct a function in  $C_0^{\infty}(\mathbb{R}^n)$  whose support is a ball.

### 2.

Let  $\phi(x)$  be a bounded positive measurable function such that  $\phi(x) = 0$  outside [-1, 1] and  $\int \phi = 1$ . For  $\varepsilon > 0$  let  $\phi_{\varepsilon}(x) = \varepsilon^{-1}\phi(\frac{x}{\varepsilon})$ . Show that  $\lim_{\varepsilon \to 0} (f * \phi_{\varepsilon})(x) = f(x)$  in the Lebesgue set of f. (\* denote convolution)

#### 3.

[a] Show that in  $L^2[0,1]$ , the parallelogram law holds, ie.

$$||f + g||^2 + ||f - g||^2 = 2||f||^2 + 2||g||^2$$

[b] Is it true for  $L^P$ ,  $p \neq 2$ ?

#### 4.

Prove that together with  $f_n(x) \ge 0$  and  $If_n \to 0$ , imply  $f_n \to 0$  in measure, but (in general) not  $f_n \to 0$  almost everywhere. Also, the condition  $f_n(x) \ge 0$  cannot be dropped.

#### 5.

[a]  $1 , show that <math>L^{P}[0,1] \supset L^{q}[0,1]$  and that  $||f||_{p} \le ||f||_{q}$  for  $f \in L^{q}$ . [b]  $\lim_{p \to \infty} ||f||_{p} = ||f||_{\infty}$  for  $f \in L^{\infty}[0,1]$ .

6.

[a] Let f be analytic in a region D in upper half plane, the boundary  $\partial D$  intersect the real line in a interval [a, b] (Fig. 1). f is continuous on  $D \cup [a, b]$  and takes real values

on [a, b]. Show that (the Schwarz reflection principle) f can be continued analytically into  $D^*$  (reflection of D).

[b] What can you conclude about the case in Fig. 2, where  $f(z) = z^{\frac{1}{2}}$  is

defined on D?

