臺灣大學數學系

八十八學年度第二學期碩博士班資格考試試題 分析(加考) [回上頁]

- 1. Let **Z** be a subset of \mathbb{R}^1 with measure zero. Show that the set $\{x^2 : x \in \mathbb{Z}\}$ also has measure zero.
- If λ₁ < λ₂ < ··· < λ_m is a finite sequence and −∞ < s < +∞, write ∑_k a_ke^{-sλ_k} as a Riemann-Stieltjes integral. [Take f(x) = e^{-sx}, φ to be an appropriate step function, and [a, b] to contain all the λ_k inits interior.]
- 3. Let f(x, y), $0 \le x, y \le 1$, satisfy the following conditions: for each x, f(x, y) is an integrable function of y, and $(\partial f(x, y)/\partial x)$ is a bounded function of f(x, y). Show that

$$\frac{d}{dx}\int_0^1 f(x,y)\ dy = \int_0^1 \frac{\partial}{\partial x} f(x,y)\ dy.$$

4. (a)

Let $\{f_k\}$ be a sequence of measurable functions on E. Show that $\sum f_k$ converges absolutely a.e. in E if $\sum \int_E |f_k| < +\infty$. [Use theorem (5.16) and (5.22).]

- (b) If $\{r_k\}$ denotes the rational numbers in [0,1] and $\{a_k\}$ satisfies $\sum |a_k| < +\infty$, show that $\sum a_k |x - r_k|^{-1/2}$ converges absolutely a.e. in [0,1].
- 5. Let E be a measurable subset of \mathbb{R}^2 such that for almost every $x \in \mathbb{R}^1$, $\{y : (x, y) \in E\}$ has \mathbb{R}^1 -measure zero. Show that E has measure zero, and that for almost every $y \in \mathbb{R}^1$, $\{x : (x, y) \in E\}$ has measure zero.
- 6. Show that if $\alpha > 0$, x^{α} is absolutely continuous on every bounded subinterval of $(0, \infty)$.

- 7. Let $f, \{f_k\} \in L^p$. Show that if $||f f_k||_p \to 0$, then $||f_k||_p \to ||f||_p$. Conversely, if $f_k \to f$ a.e. and $||f_k||_p \to ||f||_p, 1 \le p \le \infty$, show that $||f f_k||_p \to 0$.
- 8. Prove the following generalization of H \ddot{o} Ider's inequality. If $\sum_{i=1}^{k} 1/p_i = 1/r$, $p_i, r \ge 1$, then

$$||f_1\cdots f_k||_r \le ||f_1||_{p_1}\cdots ||f_k||_{p_k}.$$

9. For $f \in L(\mathbb{R}^1)$, define the *Fourier transform* \hat{f} of f by

$$\hat{f}(x) = \int_{-\infty}^{\infty} f(t)e^{-ixt} dt \qquad (x \in \mathbb{R}^1).$$

(For a complex-valued function $F = F_0 + iF_1$ whose real and imaginary parts F_0 and F_1 are integrable, we define $\int F = \int F_0 + i \int F_1$.) Show that if f and g belong to $L(\mathbb{R}^1)$, then

$$\widehat{(f * g)}(x) = \widehat{f}(x)\widehat{g}(x).$$

10. If p > 0 and $\int_E |f - f_k|^p \to 0$ as $k \to \infty$, show that $f_k \xrightarrow{m} f$ on E (and thus that there is a subsequence $f_{k_j} \to f$ a.e. in E).

<u>[回上頁]</u>